Liver vessel MRI image segmentation based on dual-path diffusion model

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2024-08-03 DOI:10.1016/j.jrras.2024.101025
Ruodai Wu , Yue Peng , Songxiong Wu , Zhengkui Peng , Yanjiao Li , Minmin Zhou , Bing Xiong , Fuqiang Chen , Wenjian Qin
{"title":"Liver vessel MRI image segmentation based on dual-path diffusion model","authors":"Ruodai Wu ,&nbsp;Yue Peng ,&nbsp;Songxiong Wu ,&nbsp;Zhengkui Peng ,&nbsp;Yanjiao Li ,&nbsp;Minmin Zhou ,&nbsp;Bing Xiong ,&nbsp;Fuqiang Chen ,&nbsp;Wenjian Qin","doi":"10.1016/j.jrras.2024.101025","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate segmentation of liver blood vessels in magnetic resonance imaging (MRI) images is a challenging task due to the complex tree-like structure and anisotropic diffusion properties of blood vessels. To solve this problem, we propose a new Dual-Path Diffusion Model (DPDM) framework. The framework consists of two collaborative diffusion paths: a local feature learning path based on convolution operations and a global context modeling path based on transform blocks. Local path encodes rich shape priors and preserve spatial details, while global path captures long-distance dependencies and enhance representation. In the decoding phase, the boundary features from the boundary path are fused with the features of the ordinary path decoding, which further enhances the shape sensitivity. In addition, we leverage a multi-task learning scheme to jointly optimize vascular segmentation and boundary prediction tasks in an end-to-end manner. Experiments on retrospective clinical dataset demonstrate that the proposed DPDM framework achieves excellent performance on the liver vessel segmentation task. Compared with state-of-the-art methods, our approach achieved a 6.0% and 7.3% performance improvement in Dice coefficient and IoU index, respectively. Our approach offers a promising solution for automated blood vessel segmentation in precision medicine.</p></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"17 3","pages":"Article 101025"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687850724002097/pdfft?md5=487460660a6ae83a2da73e1c87d08d50&pid=1-s2.0-S1687850724002097-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850724002097","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of liver blood vessels in magnetic resonance imaging (MRI) images is a challenging task due to the complex tree-like structure and anisotropic diffusion properties of blood vessels. To solve this problem, we propose a new Dual-Path Diffusion Model (DPDM) framework. The framework consists of two collaborative diffusion paths: a local feature learning path based on convolution operations and a global context modeling path based on transform blocks. Local path encodes rich shape priors and preserve spatial details, while global path captures long-distance dependencies and enhance representation. In the decoding phase, the boundary features from the boundary path are fused with the features of the ordinary path decoding, which further enhances the shape sensitivity. In addition, we leverage a multi-task learning scheme to jointly optimize vascular segmentation and boundary prediction tasks in an end-to-end manner. Experiments on retrospective clinical dataset demonstrate that the proposed DPDM framework achieves excellent performance on the liver vessel segmentation task. Compared with state-of-the-art methods, our approach achieved a 6.0% and 7.3% performance improvement in Dice coefficient and IoU index, respectively. Our approach offers a promising solution for automated blood vessel segmentation in precision medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双路径扩散模型的肝脏血管磁共振成像图像分割
由于血管具有复杂的树状结构和各向异性的扩散特性,在磁共振成像(MRI)图像中准确分割肝脏血管是一项具有挑战性的任务。为解决这一问题,我们提出了一种新的双路径扩散模型(DPDM)框架。该框架由两条协作扩散路径组成:一条是基于卷积运算的局部特征学习路径,另一条是基于变换块的全局上下文建模路径。局部路径编码丰富的形状先验并保留空间细节,而全局路径则捕捉长距离依赖关系并增强代表性。在解码阶段,边界路径的边界特征与普通路径解码的特征相融合,从而进一步提高了形状灵敏度。此外,我们还利用多任务学习方案,以端到端的方式联合优化血管分割和边界预测任务。在回顾性临床数据集上进行的实验表明,所提出的 DPDM 框架在肝脏血管分割任务中取得了优异的性能。与最先进的方法相比,我们的方法在 Dice 系数和 IoU 指数方面分别提高了 6.0% 和 7.3%。我们的方法为精准医疗中的自动血管分割提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Implementation of homotopy analysis method for entropy-optimized two-phase nanofluid flow in a bioconvective non-Newtonian model with thermal radiation Comparative analysis of machine learning techniques for estimating dynamic viscosity in various nanofluids for improving the efficiency of thermal and radiative systems Multi-modal feature integration for thyroid nodule prediction: Combining clinical data with ultrasound-based deep features The New Extended Exponentiated Burr XII distribution: Properties and applications Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1