Analysis of the spatial distribution and future trends of coal mine accidents: A case study of coal mine accidents in China from 2005–2022

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2024-07-30 DOI:10.1016/j.spasta.2024.100851
He Yinnan , Qin Ruxiang
{"title":"Analysis of the spatial distribution and future trends of coal mine accidents: A case study of coal mine accidents in China from 2005–2022","authors":"He Yinnan ,&nbsp;Qin Ruxiang","doi":"10.1016/j.spasta.2024.100851","DOIUrl":null,"url":null,"abstract":"<div><p>A scientific grasp of the macro law of coal mining accidents can contribute to strengthening their prevention and control and guaranteeing a stable energy supply. In this study, 2,269 investigation reports of China's coal mining accidents from 2005 to 2022 were adopted as the basic data source, and GIS spatial analysis and rescaled range analysis methods were utilized to comprehensively reveal the spatial-temporal distribution features, and evolutionary patterns of coal mining accidents in China. The findings indicate that the numbers of gas explosion, permeability, outburst, suffocation and roof fall accidents has rapidly declined. The coverage area of coal mining accidents has gradually moved toward western of China. However, the center of the area covered by coal mining accidents during the study period was mainly concentrated in Shanxi and Henan Provinces. Besides, the number of deaths resulting from coal mining accidents across the country has gradually decreased, while the time series exhibited high continuity, with future changes consistent with past changes. The average cycle period of the coal mining accident sequence was 5 years. Through the systematic analysis of coal mine accidents conducted in this research, the law of accident occurrence was more comprehensively revealed, providing a reference and basis for the government and enterprises to implement precise preventive measures.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000423","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A scientific grasp of the macro law of coal mining accidents can contribute to strengthening their prevention and control and guaranteeing a stable energy supply. In this study, 2,269 investigation reports of China's coal mining accidents from 2005 to 2022 were adopted as the basic data source, and GIS spatial analysis and rescaled range analysis methods were utilized to comprehensively reveal the spatial-temporal distribution features, and evolutionary patterns of coal mining accidents in China. The findings indicate that the numbers of gas explosion, permeability, outburst, suffocation and roof fall accidents has rapidly declined. The coverage area of coal mining accidents has gradually moved toward western of China. However, the center of the area covered by coal mining accidents during the study period was mainly concentrated in Shanxi and Henan Provinces. Besides, the number of deaths resulting from coal mining accidents across the country has gradually decreased, while the time series exhibited high continuity, with future changes consistent with past changes. The average cycle period of the coal mining accident sequence was 5 years. Through the systematic analysis of coal mine accidents conducted in this research, the law of accident occurrence was more comprehensively revealed, providing a reference and basis for the government and enterprises to implement precise preventive measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
煤矿事故的空间分布和未来趋势分析:2005-2022 年中国煤矿事故案例研究
科学把握煤矿事故发生的宏观规律,有助于加强煤矿事故防控,保障能源稳定供应。本研究以2005-2022年中国煤矿事故调查报告2269份为基础数据,利用GIS空间分析和重标度范围分析方法,全面揭示了中国煤矿事故的时空分布特征和演变规律。研究结果表明,瓦斯爆炸、透水、突水、窒息和顶板冒落事故数量迅速下降,煤矿事故覆盖区域不断扩大,事故发生率逐年上升。煤矿事故的覆盖区域逐渐向西部转移。然而,研究期间煤矿事故覆盖区域的中心主要集中在山西省和河南省。此外,全国煤矿事故死亡人数逐渐减少,时间序列表现出较强的连续性,未来的变化与过去的变化相一致。煤矿事故序列的平均周期为 5 年。通过对煤矿事故的系统分析,较为全面地揭示了事故发生的规律,为政府和企业实施精准预防措施提供了参考和依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1