Viraj R. Karambelkar, Mansi M. Kasliwal, Patrick Tisserand, Shreya Anand, Michael C. B. Ashley, Lars Bildsten, Geoffrey C. Clayton, Courtney C. Crawford, Kishalay De, Nicholas Earley, Matthew J. Hankins, Xander Hall, Astrid Lamberts, Ryan M. Lau, Dan McKenna, Anna Moore, Eran O. Ofek, Roger M. Smith, Roberto Soria, Jamie Soon and Tony Travouillon
{"title":"An Infrared Census of R Coronae Borealis Stars II—Spectroscopic Classifications and Implications for the Rate of Low-mass White Dwarf Mergers","authors":"Viraj R. Karambelkar, Mansi M. Kasliwal, Patrick Tisserand, Shreya Anand, Michael C. B. Ashley, Lars Bildsten, Geoffrey C. Clayton, Courtney C. Crawford, Kishalay De, Nicholas Earley, Matthew J. Hankins, Xander Hall, Astrid Lamberts, Ryan M. Lau, Dan McKenna, Anna Moore, Eran O. Ofek, Roger M. Smith, Roberto Soria, Jamie Soon and Tony Travouillon","doi":"10.1088/1538-3873/ad6210","DOIUrl":null,"url":null,"abstract":"We present results from a systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, using data from the Palomar Gattini IR (PGIR) survey. RCB stars are dusty, erratic variable stars presumably formed from the merger of a He-core and a CO-core white dwarf (WD). PGIR is a 30 cm J-band telescope with a 25 deg2 camera that surveys 18,000 deg2 of the northern sky (δ > −28°) at a cadence of 2 days. Using PGIR J-band lightcurves for ∼60 million stars together with mid-IR colors from WISE, we selected a sample of 530 candidate RCB stars. We obtained near-IR spectra for these candidates and identified 53 RCB stars in our sample. Accounting for our selection criteria, we find that there are a total of RCB stars in the Milky Way. Assuming typical RCB lifetimes, this corresponds to an RCB formation rate of 0.8–5 × 10−3 yr−1, consistent with observational and theoretical estimates of the He-CO WD merger rate. We searched for quasi-periodic pulsations in the PGIR lightcurves of RCB stars and present pulsation periods for 16 RCB stars. We also examined high-cadenced TESS lightcurves for RCB and the chemically similar, but dustless hydrogen-deficient carbon (dLHdC) stars. We find that dLHdC stars show variations on timescales shorter than RCB stars, suggesting that they may have lower masses than RCB stars. Finally, we identified 3 new spectroscopically confirmed and 12 candidate Galactic DY Per type stars—believed to be colder cousins of RCB star—doubling the sample of Galactic DY Per type stars.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad6210","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present results from a systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, using data from the Palomar Gattini IR (PGIR) survey. RCB stars are dusty, erratic variable stars presumably formed from the merger of a He-core and a CO-core white dwarf (WD). PGIR is a 30 cm J-band telescope with a 25 deg2 camera that surveys 18,000 deg2 of the northern sky (δ > −28°) at a cadence of 2 days. Using PGIR J-band lightcurves for ∼60 million stars together with mid-IR colors from WISE, we selected a sample of 530 candidate RCB stars. We obtained near-IR spectra for these candidates and identified 53 RCB stars in our sample. Accounting for our selection criteria, we find that there are a total of RCB stars in the Milky Way. Assuming typical RCB lifetimes, this corresponds to an RCB formation rate of 0.8–5 × 10−3 yr−1, consistent with observational and theoretical estimates of the He-CO WD merger rate. We searched for quasi-periodic pulsations in the PGIR lightcurves of RCB stars and present pulsation periods for 16 RCB stars. We also examined high-cadenced TESS lightcurves for RCB and the chemically similar, but dustless hydrogen-deficient carbon (dLHdC) stars. We find that dLHdC stars show variations on timescales shorter than RCB stars, suggesting that they may have lower masses than RCB stars. Finally, we identified 3 new spectroscopically confirmed and 12 candidate Galactic DY Per type stars—believed to be colder cousins of RCB star—doubling the sample of Galactic DY Per type stars.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.