Yingying Zeng, Xiuguang Yi, Haihui Chen, Limin Liu
{"title":"Damage Mechanism to Silicon Anode Due to Dissolved Manganese Ions from Cathode in Lithium Ion Batteries","authors":"Yingying Zeng, Xiuguang Yi, Haihui Chen, Limin Liu","doi":"10.1007/s12633-024-03107-4","DOIUrl":null,"url":null,"abstract":"<div><p>It is still unknown how dissolved manganese ions affect the silicon anode's electrochemical performance in the lithium-ion batteries (LIBs). In this study, the damage mechanism of Mn<sup>2+ </sup>to silicon electrode in LIBs was studied by adding Mn<sup>2+</sup> into electrolyte system to simulate the electrochemical environment. Through the comparison between full cell and half cell, the mechanism of the capacity fading of silicon electrode is revealed. In order to compare the amount of SEI growth of silicon anode during cycling, the heat flux of SEI was analyzed by DSC. Experiments shows that Mn<sup>2+</sup> could make SEI more fragile, more easily break, and then accelerate the SEI thickening. So Mn<sup>2+</sup> could reduce the Coulomb efficiency and electrochemical capacity of the silicon-based electrode. The galvanostatic cycle current is 300 mA/g. The half cell's Coulomb efficiency exceeds 97%, whereas the whole cell's Coulomb efficiency is only 32% after 100 cycles. In addition to the damage of the Mn<sup>2+</sup> to silicon anode, the depletion of active lithium ion source in full cell is also an important reason for the rapid decline of electrochemical capacity.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 15","pages":"5665 - 5672"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03107-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is still unknown how dissolved manganese ions affect the silicon anode's electrochemical performance in the lithium-ion batteries (LIBs). In this study, the damage mechanism of Mn2+ to silicon electrode in LIBs was studied by adding Mn2+ into electrolyte system to simulate the electrochemical environment. Through the comparison between full cell and half cell, the mechanism of the capacity fading of silicon electrode is revealed. In order to compare the amount of SEI growth of silicon anode during cycling, the heat flux of SEI was analyzed by DSC. Experiments shows that Mn2+ could make SEI more fragile, more easily break, and then accelerate the SEI thickening. So Mn2+ could reduce the Coulomb efficiency and electrochemical capacity of the silicon-based electrode. The galvanostatic cycle current is 300 mA/g. The half cell's Coulomb efficiency exceeds 97%, whereas the whole cell's Coulomb efficiency is only 32% after 100 cycles. In addition to the damage of the Mn2+ to silicon anode, the depletion of active lithium ion source in full cell is also an important reason for the rapid decline of electrochemical capacity.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.