{"title":"FPID-RCP: A Control Method for a Swing-Type Wave Compensation Platform System","authors":"Gang Tang, Haibo Zhang, Yongli Hu, Peipei Zhou","doi":"10.3390/jmse12081376","DOIUrl":null,"url":null,"abstract":"With the rapid development of marine engineering in recent years, offshore operations have become increasingly common, making wave compensation platforms crucial for safe operations at sea. This paper presents a pendulum-type wave compensation platform specifically designed for wave compensation applications. The main components of this wave compensation platform include a chassis, support base, hydraulic cylinders, telescopic rods, upper platform, three sets of balancing mechanisms, three sets of tilt angle sensors, and a control system. Firstly, to thoroughly understand the compensatory motion of the pendulum-type three-degree-of-freedom wave compensation platform, kinematic analysis of the entire system was conducted, and the motion inverse solution curves of the mechanism were obtained through simulation using motion simulation software. Secondly, to enhance the compensatory response performance of the platform, a fuzzy PID control algorithm was employed to control the system and achieve attitude control of the platform. Finally, through control system simulation, compared to PID control, fuzzy PID reduces system response delay and successfully meets the expected technical requirements and application needs.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081376","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of marine engineering in recent years, offshore operations have become increasingly common, making wave compensation platforms crucial for safe operations at sea. This paper presents a pendulum-type wave compensation platform specifically designed for wave compensation applications. The main components of this wave compensation platform include a chassis, support base, hydraulic cylinders, telescopic rods, upper platform, three sets of balancing mechanisms, three sets of tilt angle sensors, and a control system. Firstly, to thoroughly understand the compensatory motion of the pendulum-type three-degree-of-freedom wave compensation platform, kinematic analysis of the entire system was conducted, and the motion inverse solution curves of the mechanism were obtained through simulation using motion simulation software. Secondly, to enhance the compensatory response performance of the platform, a fuzzy PID control algorithm was employed to control the system and achieve attitude control of the platform. Finally, through control system simulation, compared to PID control, fuzzy PID reduces system response delay and successfully meets the expected technical requirements and application needs.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.