{"title":"Three-Dimensional Coverage Path Planning for Cooperative Autonomous Underwater Vehicles: A Swarm Migration Genetic Algorithm Approach","authors":"Yangmin Xie, Wenbo Hui, Dacheng Zhou, Hang Shi","doi":"10.3390/jmse12081366","DOIUrl":null,"url":null,"abstract":"Cooperative marine exploration tasks involving multiple autonomous underwater vehicles (AUVs) present a complex 3D coverage path planning challenge that has not been fully addressed. To tackle this, we employ an auto-growth strategy to generate interconnected paths, ensuring simultaneous satisfaction of the obstacle avoidance and space coverage requirements. Our approach introduces a novel genetic algorithm designed to achieve equivalent and energy-efficient path allocation among AUVs. The core idea involves defining competing gene swarms to facilitate path migration, corresponding to path allocation actions among AUVs. The fitness function incorporates models for both energy consumption and optimal path connections, resulting in iterations that lead to optimal path assignment among AUVs. This framework for multi-AUV coverage path planning eliminates the need for pre-division of the working space and has proven effective in 3D underwater environments. Numerous experiments validate the proposed method, showcasing its comprehensive advantages in achieving equitable path allocation, minimizing overall energy consumption, and ensuring high computational efficiency. These benefits contribute to the success of multi-AUV cooperation in deep-sea information collection and environmental surveillance.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"33 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12081366","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative marine exploration tasks involving multiple autonomous underwater vehicles (AUVs) present a complex 3D coverage path planning challenge that has not been fully addressed. To tackle this, we employ an auto-growth strategy to generate interconnected paths, ensuring simultaneous satisfaction of the obstacle avoidance and space coverage requirements. Our approach introduces a novel genetic algorithm designed to achieve equivalent and energy-efficient path allocation among AUVs. The core idea involves defining competing gene swarms to facilitate path migration, corresponding to path allocation actions among AUVs. The fitness function incorporates models for both energy consumption and optimal path connections, resulting in iterations that lead to optimal path assignment among AUVs. This framework for multi-AUV coverage path planning eliminates the need for pre-division of the working space and has proven effective in 3D underwater environments. Numerous experiments validate the proposed method, showcasing its comprehensive advantages in achieving equitable path allocation, minimizing overall energy consumption, and ensuring high computational efficiency. These benefits contribute to the success of multi-AUV cooperation in deep-sea information collection and environmental surveillance.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.