{"title":"How deep can we decipher protein evolution with deep learning models","authors":"","doi":"10.1016/j.patter.2024.101043","DOIUrl":null,"url":null,"abstract":"<p>Evolutionary-based machine learning models have emerged as a fascinating approach to mapping the landscape for protein evolution. Lian et al. demonstrated that evolution-based deep generative models, specifically variational autoencoders, can organize SH3 homologs in a hierarchical latent space, effectively distinguishing the specific Sho1<sup>SH3</sup> domains.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Evolutionary-based machine learning models have emerged as a fascinating approach to mapping the landscape for protein evolution. Lian et al. demonstrated that evolution-based deep generative models, specifically variational autoencoders, can organize SH3 homologs in a hierarchical latent space, effectively distinguishing the specific Sho1SH3 domains.