Highly accurate and precise determination of mouse mass using computer vision

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-08-07 DOI:10.1016/j.patter.2024.101039
{"title":"Highly accurate and precise determination of mouse mass using computer vision","authors":"","doi":"10.1016/j.patter.2024.101039","DOIUrl":null,"url":null,"abstract":"<p>Changes in body mass are key indicators of health in humans and animals and are routinely monitored in animal husbandry and preclinical studies. In rodent studies, the current method of manually weighing the animal on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confounding studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical research areas. We combine computer vision with statistical modeling to demonstrate the feasibility of determining mouse body mass by using video data. Our methods determine mass with a 4.8% error across genetically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive, continuous monitoring, improving preclinical studies and animal welfare.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in body mass are key indicators of health in humans and animals and are routinely monitored in animal husbandry and preclinical studies. In rodent studies, the current method of manually weighing the animal on a balance causes at least two issues. First, directly handling the animal induces stress, possibly confounding studies. Second, these data are static, limiting continuous assessment and obscuring rapid changes. A non-invasive, continuous method of monitoring animal mass would have utility in multiple biomedical research areas. We combine computer vision with statistical modeling to demonstrate the feasibility of determining mouse body mass by using video data. Our methods determine mass with a 4.8% error across genetically diverse mouse strains with varied coat colors and masses. This error is low enough to replace manual weighing in most mouse studies. We conclude that visually determining rodent mass enables non-invasive, continuous monitoring, improving preclinical studies and animal welfare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算机视觉高精度地测定鼠标质量
体重变化是人类和动物健康的关键指标,也是动物饲养和临床前研究的常规监测指标。在啮齿动物研究中,目前在天平上手动称量动物体重的方法至少会造成两个问题。首先,直接处理动物会造成应激,可能会干扰研究。其次,这些数据是静态的,限制了连续评估,并掩盖了快速变化。一种非侵入式的连续动物质量监测方法将在多个生物医学研究领域发挥作用。我们将计算机视觉与统计建模相结合,证明了利用视频数据确定小鼠体重的可行性。我们的方法能确定具有不同毛色和体重的不同基因小鼠品系的体重,误差仅为 4.8%。这个误差很低,足以在大多数小鼠研究中取代人工称重。我们的结论是,目测啮齿动物的体重可以实现无创、连续的监测,从而改善临床前研究和动物福利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1