Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate

S. Blazquez, J. Algaba, J. M. Míguez, C. Vega, F. J. Blas, M. M. Conde
{"title":"Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate","authors":"S. Blazquez, J. Algaba, J. M. Míguez, C. Vega, F. J. Blas, M. M. Conde","doi":"arxiv-2408.02098","DOIUrl":null,"url":null,"abstract":"Clathrate hydrates are vital in energy research and environmental\napplications. Understanding their stability is crucial for harnessing their\npotential. In this work, we employ direct coexistence simulations to study\nfinite-size effects in the determination of the three-phase equilibrium\ntemperature ($T_3$) for methane hydrates. Two popular water models, TIP4P/Ice\nand TIP4P/2005, are employed, exploring various system sizes by varying the\nnumber of molecules in the hydrate, liquid, and gas phases. The results reveal\nthat finite-size effects play a crucial role in determining $T_3$. The study\nincludes nine configurations with varying system sizes, demonstrating that\nsmaller systems, particularly those leading to stoichiometric conditions and\nbubble formation, may yield inaccurate $T_3$ values. The emergence of methane\nbubbles within the liquid phase, observed in smaller configurations,\nsignificantly influences the behavior of the system and can lead to erroneous\ntemperature estimations. Our findings reveal finite size effects on the\ncalculation of the $T_3$ by direct coexistence simulations and clarify the\nsystem size convergence for both models, shedding light on discrepancies found\nin the literature. The results contribute to a deeper understanding of the\nphase equilibrium of gas hydrates and offer valuable information for future\nresearch in this field.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clathrate hydrates are vital in energy research and environmental applications. Understanding their stability is crucial for harnessing their potential. In this work, we employ direct coexistence simulations to study finite-size effects in the determination of the three-phase equilibrium temperature ($T_3$) for methane hydrates. Two popular water models, TIP4P/Ice and TIP4P/2005, are employed, exploring various system sizes by varying the number of molecules in the hydrate, liquid, and gas phases. The results reveal that finite-size effects play a crucial role in determining $T_3$. The study includes nine configurations with varying system sizes, demonstrating that smaller systems, particularly those leading to stoichiometric conditions and bubble formation, may yield inaccurate $T_3$ values. The emergence of methane bubbles within the liquid phase, observed in smaller configurations, significantly influences the behavior of the system and can lead to erroneous temperature estimations. Our findings reveal finite size effects on the calculation of the $T_3$ by direct coexistence simulations and clarify the system size convergence for both models, shedding light on discrepancies found in the literature. The results contribute to a deeper understanding of the phase equilibrium of gas hydrates and offer valuable information for future research in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机模拟的水合物三相平衡。I. 甲烷水合物中的有限尺寸效应
克拉水合物在能源研究和环境应用中至关重要。了解它们的稳定性对于利用它们的潜力至关重要。在这项工作中,我们采用直接共存模拟来研究确定甲烷水合物三相平衡温度($T_3$)时的无限大效应。我们采用了两种常用的水模型 TIP4P/Ice 和 TIP4P/2005,通过改变水合物、液相和气相中的分子数量来探索各种系统大小。研究结果表明,有限尺寸效应在确定 $T_3$ 时起着至关重要的作用。该研究包括九种不同系统尺寸的配置,表明较小的系统,特别是那些导致化学计量条件和气泡形成的系统,可能会产生不准确的 $T_3$ 值。在较小配置中观察到的液相中甲烷气泡的出现极大地影响了系统的行为,并可能导致错误的系统温度估计。我们的研究结果揭示了有限尺寸对通过直接共存模拟计算 $T_3$ 的影响,并澄清了两种模型的系统尺寸收敛性,揭示了文献中发现的差异。这些结果有助于加深对天然气水合物相平衡的理解,并为该领域的未来研究提供了宝贵信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The elastica sling Lifting a granular box by a half-buried rod Length scales in electrolytes Mapping self-avoiding walk on obstacle-ridden lattice onto chelation of heavy metal ions: Monte Carlo study Universality of the close packing properties and markers of isotropic-to-tetratic phase change in quasi-one-dimensional superdisk fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1