Effects of SiO2 Particle Size in Soggy‐Sand Electrolyte on Electrochemical Performance of Zinc‐Ion Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-08-07 DOI:10.1002/batt.202400404
Jieshuangyang Chen, Rongyu Deng, Jinwei Zhou, Ziang Jiang, Mingzhi Qian, Feixiang Wu
{"title":"Effects of SiO2 Particle Size in Soggy‐Sand Electrolyte on Electrochemical Performance of Zinc‐Ion Batteries","authors":"Jieshuangyang Chen, Rongyu Deng, Jinwei Zhou, Ziang Jiang, Mingzhi Qian, Feixiang Wu","doi":"10.1002/batt.202400404","DOIUrl":null,"url":null,"abstract":"The presence of free water molecules in the aqueous electrolyte leads to serious side reactions at the interface, easy dissolution of the cathode material, and uncontrolled growth of zinc dendrites in Zn‐ion batteries, which hinders their practical applications. Here, we propose a type of SiO2‐based soggy‐sand electrolyte (ZnSO4+MnSO4 electrolyte with SiO2, SiO2‐ZMSO4) and focus on the effect of the SiO2 nanoparticle size on the performance of soggy‐sand electrolyte. It is found that SiO2 with smaller nanoparticle size provides higher porosity, and the SiO2 network‐formed can effectively trap the free water in the electrolyte, which increases the ionic conductivity of electrolyte, widens working voltage window, and decreases the internal resistance of batteries. As a result, the Zn//MnO2 batteries with 20 nm SiO2‐based soggy‐sand electrolyte show stable cycling performance and rate capacities. The specific capacity of the battery can be maintained at 198.5 mAh g‐1 after 1200 cycles at 1A g‐1 without capacity degradation. The specific capacity can be increased by 100 mAh g‐1 even at a high rate of 5 A g‐1. This study provides the rule of particle selection for the development of aqueous soggy‐sand electrolytes used in aqueous rechargeable batteries.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"64 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400404","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of free water molecules in the aqueous electrolyte leads to serious side reactions at the interface, easy dissolution of the cathode material, and uncontrolled growth of zinc dendrites in Zn‐ion batteries, which hinders their practical applications. Here, we propose a type of SiO2‐based soggy‐sand electrolyte (ZnSO4+MnSO4 electrolyte with SiO2, SiO2‐ZMSO4) and focus on the effect of the SiO2 nanoparticle size on the performance of soggy‐sand electrolyte. It is found that SiO2 with smaller nanoparticle size provides higher porosity, and the SiO2 network‐formed can effectively trap the free water in the electrolyte, which increases the ionic conductivity of electrolyte, widens working voltage window, and decreases the internal resistance of batteries. As a result, the Zn//MnO2 batteries with 20 nm SiO2‐based soggy‐sand electrolyte show stable cycling performance and rate capacities. The specific capacity of the battery can be maintained at 198.5 mAh g‐1 after 1200 cycles at 1A g‐1 without capacity degradation. The specific capacity can be increased by 100 mAh g‐1 even at a high rate of 5 A g‐1. This study provides the rule of particle selection for the development of aqueous soggy‐sand electrolytes used in aqueous rechargeable batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沼砂电解质中 SiO2 颗粒大小对锌-离子电池电化学性能的影响
水性电解质中自由水分子的存在会导致界面副反应严重、正极材料容易溶解以及锌枝晶在锌离子电池中的不可控生长,从而阻碍其实际应用。在此,我们提出了一种基于 SiO2 的湿砂电解液(含 SiO2 的 ZnSO4+MnSO4 电解液,SiO2-ZMSO4),并重点研究了 SiO2 纳米粒子尺寸对湿砂电解液性能的影响。研究发现,纳米粒径较小的 SiO2 具有较高的孔隙率,形成的 SiO2 网络能有效截留电解液中的游离水,从而提高电解液的离子导电率,拓宽工作电压窗口,降低电池内阻。因此,使用 20 nm SiO2 基湿砂电解液的 Zn//MnO2 电池显示出稳定的循环性能和速率容量。在 1A g-1 下循环 1200 次后,电池的比容量可保持在 198.5 mAh g-1 而不会出现容量衰减。即使在 5 A g-1 的高倍率下,比容量也能增加 100 mAh g-1。这项研究为开发水基可充电电池所用的水基湿沙电解质提供了颗粒选择规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1