Achieving High-Performance in Zinc Hybrid Capacitors with Zn(TFSI)2/PEGDME Molecular Crowding Electrolytes

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-08-12 DOI:10.1002/batt.202400414
Dr. Nagaraj Patil, Dr. Diana Elena Ciurduc, F. J. Landazábal, Dr. Rebeca Marcilla
{"title":"Achieving High-Performance in Zinc Hybrid Capacitors with Zn(TFSI)2/PEGDME Molecular Crowding Electrolytes","authors":"Dr. Nagaraj Patil,&nbsp;Dr. Diana Elena Ciurduc,&nbsp;F. J. Landazábal,&nbsp;Dr. Rebeca Marcilla","doi":"10.1002/batt.202400414","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zinc-hybrid capacitors (ZHCs) are gaining attention for their high-safety, low cost, easy maintenance, high-power, and longevity. Despite various strategies to mitigate dendrites, corrosion, and HER, practical application remains challenging. Here, we utilize an advanced polyethylene glycol dimethyl ether (PEGDME)-based molecular crowding electrolyte (MCE) to significantly enhance performance of ZHCs. Our MCE offers a wider electrochemical stability window (2.7 V), low HER activity, and superior Zn anti-corrosion properties due to reduced water activity compared to conventional electrolyte. This results in higher coulombic efficiencies (98–100 %) at various areal capacities and current densities, and longer longevity of Zn//Cu and Zn//Zn symmetric cells with MCE compared to conventional and water-in-salt electrolytes. The Zn/MCE/AC displays an enhanced voltage window (∼2 V), achieving the highest capacitance (281 F/g), competitive energy density (138 Wh/kg), low self-discharge, and excellent cyclability (19100 cycles at 1 A/g with 100 % capacity retention), indicating that MCE is a promising approach for practical energy storage applications.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400414","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zinc-hybrid capacitors (ZHCs) are gaining attention for their high-safety, low cost, easy maintenance, high-power, and longevity. Despite various strategies to mitigate dendrites, corrosion, and HER, practical application remains challenging. Here, we utilize an advanced polyethylene glycol dimethyl ether (PEGDME)-based molecular crowding electrolyte (MCE) to significantly enhance performance of ZHCs. Our MCE offers a wider electrochemical stability window (2.7 V), low HER activity, and superior Zn anti-corrosion properties due to reduced water activity compared to conventional electrolyte. This results in higher coulombic efficiencies (98–100 %) at various areal capacities and current densities, and longer longevity of Zn//Cu and Zn//Zn symmetric cells with MCE compared to conventional and water-in-salt electrolytes. The Zn/MCE/AC displays an enhanced voltage window (∼2 V), achieving the highest capacitance (281 F/g), competitive energy density (138 Wh/kg), low self-discharge, and excellent cyclability (19100 cycles at 1 A/g with 100 % capacity retention), indicating that MCE is a promising approach for practical energy storage applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Zn(TFSI)2/PEGDME 分子排挤电解质实现高性能锌混合电容器
水性锌-杂化电容器(ZHC)因其安全性高、成本低、易于维护、功率大和寿命长而备受关注。尽管采取了各种策略来减少枝晶、腐蚀和 HER,但实际应用仍然充满挑战。在这里,我们利用一种先进的基于聚乙二醇二甲醚(PEGDME)的分子排挤电解质(MCE)来显著提高 ZHC 的性能。与传统电解质相比,我们的 MCE 具有更宽的电化学稳定性窗口(2.7 V)、较低的 HER 活性以及因水活性降低而具有的出色的锌抗腐蚀性能。因此,与传统电解质和盐包水电解质相比,使用 MCE 的 Zn//Cu 和 Zn//Zn 对称电池在不同面积容量和电流密度下的库仑效率更高(98-100%),寿命更长。Zn/MCE/AC 显示出增强的电压窗口(~2 V),实现了最高的电容(281 F/g)、有竞争力的能量密度(138 Wh/kg)、低自放电和出色的循环性(在 1 A/g 条件下循环 19100 次,容量保持率为 100%),表明 MCE 是一种很有前途的实际储能应用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Finite Element Simulation of NMC Particle Fracture During Calendering: A Route to Optimize Electrode Microstructures Mechanistic Insights into Sodium Niobate Surface Coating for Enhanced Cycling Performance of MnCuFe-Based Layered Oxides for Sodium-Ion Batteries The Solid Electrolyte Interphase Engineering for Enhanced Cycling Stability in Sodium-Ion Batteries: Strategies, Mechanistic Insights, and Performance Optimization Demonstrating the Performance of Aspartic-Acid Functionalized Naphthalene Diimide in a Near-Neutral Flow Battery Hierarchical Porosity Engineering of Birch-Derived Carbons via KOH Activation for High-Performance Aluminum Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1