A comprehensive review on solid desiccant-assisted novel dehumidification and its advanced regeneration methods

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-08-05 DOI:10.1007/s10973-024-13479-9
Vikash Kumar Gorai, Sanjay Kumar Singh, D. B. Jani
{"title":"A comprehensive review on solid desiccant-assisted novel dehumidification and its advanced regeneration methods","authors":"Vikash Kumar Gorai,&nbsp;Sanjay Kumar Singh,&nbsp;D. B. Jani","doi":"10.1007/s10973-024-13479-9","DOIUrl":null,"url":null,"abstract":"<div><p>A solid desiccant-based novel dehumidification technique in indoor cooling is a viable substitute for a traditional dehumidification system in regions with high humidity levels. The ozone layer is being steadily destroyed by vapour compression-based conventional dehumidification systems, which also have a number of other disadvantages such as excessive power consumption and a rise in the amount of chlorofluorocarbons type refrigerant leakage in the atmosphere. As compared to traditionally used vapour compression type refrigeration air conditioners, solid desiccant-integrated novel cooling may be more advantageous as it provides more easily accessible, cost-effective, and ecologically sound cooling. It can be more competitive when it is reactivated by freely available renewable heat available from solar power and industrial waste heat. Not only marginally saving energy, but it can also help in drastically lower operational costs. Recently, many studies have been carried out with aim of ameliorating desiccant air conditioners' overall performance through the development of novel system configurations, enhanced system designs and better controls, and the integration of hybrid energy sources for desiccant reactivation as well as sub-systems technological advancements. By this means, the present study offers a thorough analysis of the previously described investigations. This offers detailed study on possible suggestions and recommendations for possible future work direction based on the most recent investigations in the field of the desiccant-powered novel cooling techniques. These recommendations can help to amplify the efforts to find better solutions to concurrent technological issues, which will definitely ameliorate the overall performance of desiccant-integrated dehumidification and hybrid cooling in the field of heating, ventilation and air conditioning.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 17","pages":"8979 - 9000"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13479-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A solid desiccant-based novel dehumidification technique in indoor cooling is a viable substitute for a traditional dehumidification system in regions with high humidity levels. The ozone layer is being steadily destroyed by vapour compression-based conventional dehumidification systems, which also have a number of other disadvantages such as excessive power consumption and a rise in the amount of chlorofluorocarbons type refrigerant leakage in the atmosphere. As compared to traditionally used vapour compression type refrigeration air conditioners, solid desiccant-integrated novel cooling may be more advantageous as it provides more easily accessible, cost-effective, and ecologically sound cooling. It can be more competitive when it is reactivated by freely available renewable heat available from solar power and industrial waste heat. Not only marginally saving energy, but it can also help in drastically lower operational costs. Recently, many studies have been carried out with aim of ameliorating desiccant air conditioners' overall performance through the development of novel system configurations, enhanced system designs and better controls, and the integration of hybrid energy sources for desiccant reactivation as well as sub-systems technological advancements. By this means, the present study offers a thorough analysis of the previously described investigations. This offers detailed study on possible suggestions and recommendations for possible future work direction based on the most recent investigations in the field of the desiccant-powered novel cooling techniques. These recommendations can help to amplify the efforts to find better solutions to concurrent technological issues, which will definitely ameliorate the overall performance of desiccant-integrated dehumidification and hybrid cooling in the field of heating, ventilation and air conditioning.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体干燥剂辅助新型除湿及其先进再生方法综述
基于固体干燥剂的新型室内冷却除湿技术是高湿度地区传统除湿系统的可行替代品。以蒸汽压缩为基础的传统除湿系统正在不断破坏臭氧层,而且还存在其他一些缺点,如耗电量过大、大气中氟氯化碳类制冷剂泄漏量增加等。与传统使用的蒸汽压缩式制冷空调相比,固体干燥剂集成新型冷却系统可能更有优势,因为它能提供更容易获得、更具成本效益和无害生态的冷却。如果利用太阳能和工业废热中可自由获取的可再生热量重新激活这种冷却技术,则会更具竞争力。这不仅能节约少量能源,还有助于大幅降低运营成本。最近,人们开展了许多研究,旨在通过开发新型系统配置、增强系统设计和更好的控制、整合用于干燥剂再激活的混合能源以及子系统技术进步,改善干燥剂空调的整体性能。通过这种方式,本研究对之前描述的调查进行了全面分析。在干燥剂驱动新型冷却技术领域最新研究的基础上,本研究对未来可能的工作方向提出了详细的意见和建议。这些建议有助于加大力度,为同时存在的技术问题找到更好的解决方案,这必将改善供热、通风和空调领域的干燥剂集成除湿和混合冷却的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Thermal characterization of plat heat exchanger made from polymer biocomposite reinforced by silicon carbide Recent advances in thermal analysis and calorimetry presented at the 3rd Journal of Thermal Analysis and Calorimetry Conference and 9th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2023) Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature Review about the history of thermal analysis in Hungary Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1