Some clustering-based change-point detection methods applicable to high dimension, low sample size data

Pub Date : 2024-07-16 DOI:10.1016/j.jspi.2024.106212
Trisha Dawn , Angshuman Roy , Alokesh Manna , Anil K. Ghosh
{"title":"Some clustering-based change-point detection methods applicable to high dimension, low sample size data","authors":"Trisha Dawn ,&nbsp;Angshuman Roy ,&nbsp;Alokesh Manna ,&nbsp;Anil K. Ghosh","doi":"10.1016/j.jspi.2024.106212","DOIUrl":null,"url":null,"abstract":"<div><p>Detection of change-points in a sequence of high dimensional observations is a challenging problem, and this becomes even more challenging when the sample size (i.e., the sequence length) is small. In this article, we propose some change-point detection methods based on clustering, which can be conveniently used in such high dimension, low sample size situations. First, we consider the single change-point problem. Using <span><math><mi>k</mi></math></span>-means clustering based on a suitable dissimilarity measures, we propose some methods for testing the existence of a change-point and estimating its location. High dimensional behavior of these proposed methods are investigated under appropriate regularity conditions. Next, we extend our methods for detection of multiple change-points. We carry out extensive numerical studies and analyze a real data set to compare the performance of our proposed methods with some state-of-the-art methods.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of change-points in a sequence of high dimensional observations is a challenging problem, and this becomes even more challenging when the sample size (i.e., the sequence length) is small. In this article, we propose some change-point detection methods based on clustering, which can be conveniently used in such high dimension, low sample size situations. First, we consider the single change-point problem. Using k-means clustering based on a suitable dissimilarity measures, we propose some methods for testing the existence of a change-point and estimating its location. High dimensional behavior of these proposed methods are investigated under appropriate regularity conditions. Next, we extend our methods for detection of multiple change-points. We carry out extensive numerical studies and analyze a real data set to compare the performance of our proposed methods with some state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一些适用于高维度、低样本量数据的基于聚类的变化点检测方法
在高维观测序列中检测变化点是一个具有挑战性的问题,而当样本量(即序列长度)较小时,这个问题就变得更具挑战性。在本文中,我们提出了一些基于聚类的变化点检测方法,可以方便地用于这种高维度、低样本量的情况。首先,我们考虑单个变化点问题。利用基于合适的异或度量的均值聚类,我们提出了一些检测变化点是否存在并估计其位置的方法。在适当的正则条件下,我们对这些方法的高维行为进行了研究。接下来,我们扩展了检测多个变化点的方法。我们进行了大量的数值研究,并分析了一个真实数据集,将我们提出的方法与一些最先进的方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1