Inhibiting salt precipitation on the gas diffusion electrode surface in gas-phase CO2 electroreduction to formate by using an acidic anolyte

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2024-08-01 DOI:10.1016/j.jcou.2024.102897
Jose Antonio Abarca, Guillermo Díaz-Sainz, Angel Irabien
{"title":"Inhibiting salt precipitation on the gas diffusion electrode surface in gas-phase CO2 electroreduction to formate by using an acidic anolyte","authors":"Jose Antonio Abarca,&nbsp;Guillermo Díaz-Sainz,&nbsp;Angel Irabien","doi":"10.1016/j.jcou.2024.102897","DOIUrl":null,"url":null,"abstract":"<div><p>The gas-phase CO<sub>2</sub> electroreduction to formate represents one of the most promising CO<sub>2</sub> conversion processes due to its scalability, as the product concentration surpasses 30 % wt. However, the use of alkaline media anolytes, intended to improve the efficiency and selectivity of formate production, causes the carbonate and bicarbonate salts to precipitate over the Gas Diffusion Electrode (GDE). This precipitation clogs the porous structure, leading to a rapid loss of electrode stability. In this work, we address this issue by proposing the use of acid anolytes, based on K<sub>2</sub>SO<sub>4</sub>, to mitigate the precipitation of insoluble salt on the GDE structure, thereby achieving longer and more stable GDE operation times. Various anolyte concentrations and pHs are evaluated, with 0.3 M K<sub>2</sub>SO<sub>4</sub> at pH 1, adjusted using H<sub>2</sub>SO<sub>4</sub>, providing the best compromise. This condition inhibited potassium carbonate and bicarbonate precipitation, as observed through XRD, SEM, and EDS analysis, while maintaining high CO<sub>2</sub> electroreduction to formate performance, with a concentration of 69 g L<sup>−1</sup>, and a Faradaic Efficiency of 33 %. Furthermore, the anolyte flowrate per geometric area is optimized to maximize the system performance. At a flowrate of 0.85 mL min<sup>−1</sup> cm<sup>−2</sup>, enhanced concentration of 88 g L<sup>−1</sup> and a Faradaic Efficiency of 42 % are reached. Besides, long-term experiments demonstrated that GDEs used with alkaline conditions exhibit a larger deactivation constant (0.7652) compared to the GDEs used with acid anolytes (0.3891). This indicates that salt precipitation more rapidly reduces GDE performance under alkaline conditions. These results represent a promising advance in obtaining longer-lasting GDEs, which are crucial to successfully scaling up the CO<sub>2</sub> electroreduction to formate.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"86 ","pages":"Article 102897"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002324/pdfft?md5=50e4cc8a65318f60d5418e854a7b8bc6&pid=1-s2.0-S2212982024002324-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002324","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The gas-phase CO2 electroreduction to formate represents one of the most promising CO2 conversion processes due to its scalability, as the product concentration surpasses 30 % wt. However, the use of alkaline media anolytes, intended to improve the efficiency and selectivity of formate production, causes the carbonate and bicarbonate salts to precipitate over the Gas Diffusion Electrode (GDE). This precipitation clogs the porous structure, leading to a rapid loss of electrode stability. In this work, we address this issue by proposing the use of acid anolytes, based on K2SO4, to mitigate the precipitation of insoluble salt on the GDE structure, thereby achieving longer and more stable GDE operation times. Various anolyte concentrations and pHs are evaluated, with 0.3 M K2SO4 at pH 1, adjusted using H2SO4, providing the best compromise. This condition inhibited potassium carbonate and bicarbonate precipitation, as observed through XRD, SEM, and EDS analysis, while maintaining high CO2 electroreduction to formate performance, with a concentration of 69 g L−1, and a Faradaic Efficiency of 33 %. Furthermore, the anolyte flowrate per geometric area is optimized to maximize the system performance. At a flowrate of 0.85 mL min−1 cm−2, enhanced concentration of 88 g L−1 and a Faradaic Efficiency of 42 % are reached. Besides, long-term experiments demonstrated that GDEs used with alkaline conditions exhibit a larger deactivation constant (0.7652) compared to the GDEs used with acid anolytes (0.3891). This indicates that salt precipitation more rapidly reduces GDE performance under alkaline conditions. These results represent a promising advance in obtaining longer-lasting GDEs, which are crucial to successfully scaling up the CO2 electroreduction to formate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在气相二氧化碳电还原甲酸盐的过程中使用酸性溶解液抑制气体扩散电极表面的盐沉淀
气相一氧化碳电还原为甲酸盐是最有前途的一氧化碳转化工艺之一,因为其产品浓度超过 30% wt,具有可扩展性。然而,为了提高甲酸盐生产的效率和选择性而使用的碱性介质电解质会导致碳酸盐和碳酸氢盐在气体扩散电极(GDE)上沉淀。这种沉淀堵塞了多孔结构,导致电极稳定性迅速下降。在这项工作中,我们针对这一问题提出了使用基于 KSO 的酸性溶液来缓解 GDE 结构上不溶盐的沉淀,从而实现更长、更稳定的 GDE 操作时间。我们对不同浓度和 pH 值的酸性溶液进行了评估,其中 pH 值为 1 的 0.3 M KSO(使用 HSO 调节)是最佳的折衷方案。通过 XRD、SEM 和 EDS 分析观察到,这种条件抑制了碳酸钾和碳酸氢盐的沉淀,同时保持了较高的 CO 电还原成甲酸盐的性能,浓度为 69 克/升,法拉第效率为 33%。此外,还优化了单位几何面积的溶解液流速,以最大限度地提高系统性能。流量为 0.85 mL min cm 时,浓度提高到 88 g L,法拉第效率达到 42%。此外,长期实验表明,与使用酸性溶液的 GDE(0.3891)相比,在碱性条件下使用的 GDE 显示出更大的失活常数(0.7652)。这表明在碱性条件下,盐沉淀会更快地降低 GDE 的性能。这些结果表明,在获得更持久的 GDE 方面取得了可喜的进步,这对于成功扩大 CO 电还原成甲酸盐的规模至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Liquid-phase CO2 hydrogenation to methanol synthesis: Solvent screening, process design and techno-economic evaluation Evolution law of the pore structure of CO2-H2O-coal in liquid CO2-ECBM Effects of the use of acetone as co-solvent on the financial viability of bio-crude production by hydrothermal liquefaction of CO2 captured by microalgae Reactivity of aqueous carbonated cement pastes: Effect of chemical composition and carbonation conditions Recent advancements in integrating CO2 capture from flue gas and ambient air with thermal catalytic conversion for efficient CO2 utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1