Prediction of Locally Stationary Data Using Expert Advice

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS Problems of Information Transmission Pub Date : 2024-08-07 DOI:10.1134/s0032946024010058
V. V. V’yugin, V. G. Trunov, R. D. Zukhba
{"title":"Prediction of Locally Stationary Data Using Expert Advice","authors":"V. V. V’yugin, V. G. Trunov, R. D. Zukhba","doi":"10.1134/s0032946024010058","DOIUrl":null,"url":null,"abstract":"<p>We address the lifelong machine learning problem. Within the game-theoretic approach, in the calculation of the next prediction we use no assumptions on the stochastic nature of a source that generates the data flow: the source can be either analog, or algorithmic, or probabilistic; its parameters can change at random times; when constructing a prediction model, only structural assumptions are used about the nature of data generation. We present an online forecasting algorithm for a locally stationary time series. We also obtain an estimate for the efficiency of the proposed algorithm. The obtained estimates for the regret of the algorithm are illustrated by results of numerical experiments.</p>","PeriodicalId":54581,"journal":{"name":"Problems of Information Transmission","volume":"32 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Information Transmission","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0032946024010058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the lifelong machine learning problem. Within the game-theoretic approach, in the calculation of the next prediction we use no assumptions on the stochastic nature of a source that generates the data flow: the source can be either analog, or algorithmic, or probabilistic; its parameters can change at random times; when constructing a prediction model, only structural assumptions are used about the nature of data generation. We present an online forecasting algorithm for a locally stationary time series. We also obtain an estimate for the efficiency of the proposed algorithm. The obtained estimates for the regret of the algorithm are illustrated by results of numerical experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用专家建议预测局部静态数据
我们要解决的是终身机器学习问题。在博弈论方法中,在计算下一次预测时,我们对产生数据流的源的随机性质不作任何假设:源可以是模拟的,也可以是算法的,还可以是概率的;它的参数可以随机变化;在构建预测模型时,只对数据产生的性质作结构性假设。我们提出了一种局部静止时间序列的在线预测算法。我们还对所提算法的效率进行了估计。我们通过数值实验结果说明了所获得的算法遗憾估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Problems of Information Transmission
Problems of Information Transmission 工程技术-计算机:理论方法
CiteScore
2.00
自引率
25.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Problems of Information Transmission is of interest to researcher in all fields concerned with the research and development of communication systems. This quarterly journal features coverage of statistical information theory; coding theory and techniques; noisy channels; error detection and correction; signal detection, extraction, and analysis; analysis of communication networks; optimal processing and routing; the theory of random processes; and bionics.
期刊最新文献
Prediction of Locally Stationary Data Using Expert Advice Correcting a Single Error in an Asymmetric Feedback Channel Computation of the Fundamental Limits of Data Compression for Certain Nonstationary ARMA Vector Sources On Measuring the Topological Charge of Anyons Elementary Solution to the Fair Division Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1