Kyle T. Sullivan, Ryan C. Hayward, Gregory M. Grason
{"title":"Self-limiting stacks of curvature-frustrated colloidal plates: Roles of intraparticle versus interparticle deformations","authors":"Kyle T. Sullivan, Ryan C. Hayward, Gregory M. Grason","doi":"10.1103/physreve.110.024602","DOIUrl":null,"url":null,"abstract":"In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained simulation to study a recently developed class of “curvamer” particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both <i>intraparticle</i> shape deformation as well as compliance of <i>interparticle</i> cohesive gaps, an effect we can attribute to a <i>finite range of attraction</i> between particles. We show that the ratio of intraparticle (bending elasticity) to interparticle stiffness not only controls the regimes of self-limitation but also the nature of frustration propagation through curvamer stacks. We find a transition from uniformly bound, curvature-focusing stacks at small size to gap opened, uniformly curved stacks at large size is controlled by a dimensionless measure of inter- versus intracurvamer stiffness. The finite range of interparticle attraction determines the range of cohesion in stacks that are self-limiting, a prediction which is in strong agreement with numerical studies of our coarse-grained colloidal model. These predictions provide critical guidance for experimental realizations of frustrated particle systems designed to exhibit self-limitation at especially large multiparticle scales.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.024602","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In geometrically frustrated assemblies local intersubunit misfits propagate to intra-assembly strain gradients, giving rise to anomalous self-limiting assembly thermodynamics. Here we use theory and coarse-grained simulation to study a recently developed class of “curvamer” particles, flexible shell-like particles that exhibit self-limiting assembly due to the build up of curvature deformation in cohesive stacks. To address a generic, yet poorly understood aspect of frustrated assembly, we introduce a model of curvamer assembly that incorporates both intraparticle shape deformation as well as compliance of interparticle cohesive gaps, an effect we can attribute to a finite range of attraction between particles. We show that the ratio of intraparticle (bending elasticity) to interparticle stiffness not only controls the regimes of self-limitation but also the nature of frustration propagation through curvamer stacks. We find a transition from uniformly bound, curvature-focusing stacks at small size to gap opened, uniformly curved stacks at large size is controlled by a dimensionless measure of inter- versus intracurvamer stiffness. The finite range of interparticle attraction determines the range of cohesion in stacks that are self-limiting, a prediction which is in strong agreement with numerical studies of our coarse-grained colloidal model. These predictions provide critical guidance for experimental realizations of frustrated particle systems designed to exhibit self-limitation at especially large multiparticle scales.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.