{"title":"Ferrous iron oxidation efficiency and kinetics by indigenous iron-oxidizing bacteria in acid mine drainage","authors":"Qiming Mao , Wenqing Qin , Binghua Yan , Lin Luo","doi":"10.1016/j.eti.2024.103785","DOIUrl":null,"url":null,"abstract":"<div><p>Biological Fe(II) oxidation by iron-oxidising bacteria (FeOBs) at low pH is a cost-effective treatment for acid mine drainage (AMD). However, treatments based on this process are limited because of uncertainties regarding the ability and rate of oxidation of Fe(II) from AMD. In the present study, an indigenous FeOBs consortium was enriched in AMD, and its ability to oxidise Fe(II) is described. The bio-oxidation rate of Fe(II) was 39.1 mg/(L·h) under optimal culture conditions [35 ℃, pH 2.0, 500 mg/L Fe(II)]. In addition, the oxidation rate equation of Fe(II) could be fitted to a zero-order kinetic model, indicating that Fe(II) was oxidised at a constant rate. Furthermore, a continuous-flow bioreactor was developed to simulate the Fe(II) oxidation efficiency of indigenous FeOBs for in situ AMD biological treatment. The maximum Fe(II) oxidation rate was 22.8 mg/(L·h) when the influent Fe(II) load was 32.3 mg/(L·h). <em>Acidithiobacillus</em> and <em>Acidiphilium</em> were the dominant species contributing to Fe(II) oxidation in the bioreactor, accounting for 67.7 % and 32.8 %, respectively. The results will help promote the application of FeOBs in AMD treatment.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103785"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235218642400261X/pdfft?md5=c2327b33352d86277ed9701442d8a673&pid=1-s2.0-S235218642400261X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235218642400261X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological Fe(II) oxidation by iron-oxidising bacteria (FeOBs) at low pH is a cost-effective treatment for acid mine drainage (AMD). However, treatments based on this process are limited because of uncertainties regarding the ability and rate of oxidation of Fe(II) from AMD. In the present study, an indigenous FeOBs consortium was enriched in AMD, and its ability to oxidise Fe(II) is described. The bio-oxidation rate of Fe(II) was 39.1 mg/(L·h) under optimal culture conditions [35 ℃, pH 2.0, 500 mg/L Fe(II)]. In addition, the oxidation rate equation of Fe(II) could be fitted to a zero-order kinetic model, indicating that Fe(II) was oxidised at a constant rate. Furthermore, a continuous-flow bioreactor was developed to simulate the Fe(II) oxidation efficiency of indigenous FeOBs for in situ AMD biological treatment. The maximum Fe(II) oxidation rate was 22.8 mg/(L·h) when the influent Fe(II) load was 32.3 mg/(L·h). Acidithiobacillus and Acidiphilium were the dominant species contributing to Fe(II) oxidation in the bioreactor, accounting for 67.7 % and 32.8 %, respectively. The results will help promote the application of FeOBs in AMD treatment.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.