{"title":"RosebudVirt: A High-Performance and Partially Reconfigurable FPGA Virtualization Framework for Multitenant Networks","authors":"Yiwei Chang;Zhichuan Guo","doi":"10.1109/TVLSI.2024.3436017","DOIUrl":null,"url":null,"abstract":"Field-programmable gate arrays (FPGAs) are key accelerators in cloud data centers due to their parallelism and programmability. However, challenges such as low hardware utilization and high virtualization overhead persist. This brief presents RosebudVirt, a high-performance and partially reconfigurable FPGA virtualization framework tailored for multitenant networks. It enhances the original Rosebud by introducing single-root I/O virtualization (SR-IOV) support, partitioning the PCIe-attached FPGA device into multiple physical functions (PFs) and virtual functions (VFs) accessible to the linux kernel via PF and VF drivers. This facilitates direct mapping among tenants, VFs, and reconfigurable packet-processing units (RPUs) within the FPGA. RosebudVirt achieves near-native throughput with <1% area overhead and increases hardware utilization by up to 7.6 times by additional VF drivers and network interfaces. What is more, RosebudVirt is compatible with Kubernetes and Docker.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 1","pages":"298-302"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10628053/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Field-programmable gate arrays (FPGAs) are key accelerators in cloud data centers due to their parallelism and programmability. However, challenges such as low hardware utilization and high virtualization overhead persist. This brief presents RosebudVirt, a high-performance and partially reconfigurable FPGA virtualization framework tailored for multitenant networks. It enhances the original Rosebud by introducing single-root I/O virtualization (SR-IOV) support, partitioning the PCIe-attached FPGA device into multiple physical functions (PFs) and virtual functions (VFs) accessible to the linux kernel via PF and VF drivers. This facilitates direct mapping among tenants, VFs, and reconfigurable packet-processing units (RPUs) within the FPGA. RosebudVirt achieves near-native throughput with <1% area overhead and increases hardware utilization by up to 7.6 times by additional VF drivers and network interfaces. What is more, RosebudVirt is compatible with Kubernetes and Docker.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.