Advancing climate resilience through a geo-design framework: strengthening urban and community forestry for sustainable environmental design

IF 3.4 2区 农林科学 Q1 FORESTRY Journal of Forestry Research Pub Date : 2024-08-12 DOI:10.1007/s11676-024-01772-0
Xiwei Shen, Mingze Chen, Xiaowei Li, Shu Gao, Qiuyi Yang, Yuhan Wen, Qingqing Sun
{"title":"Advancing climate resilience through a geo-design framework: strengthening urban and community forestry for sustainable environmental design","authors":"Xiwei Shen, Mingze Chen, Xiaowei Li, Shu Gao, Qiuyi Yang, Yuhan Wen, Qingqing Sun","doi":"10.1007/s11676-024-01772-0","DOIUrl":null,"url":null,"abstract":"<p>Urban and community forestry is a specialized discipline focused on the meticulous management of trees and forests within urban, suburban, and town environments. This field often entails extensive civic involvement and collaborative partnerships with institutions. Its overarching objectives span a spectrum from preserving water quality, habitat, and biodiversity to mitigating the Urban Heat Island (UHI) effect. The UHI phenomenon, characterized by notably higher temperatures in urban areas compared to rural counterparts due to heat absorption by urban infrastructure and limited urban forest coverage, serves as a focal point in this study. The study focuses on developing a methodological framework that integrates Geographically Weighted Regression (GWR), Random Forest (RF), and Suitability Analysis to assess the Urban Heat Island (UHI) effect across different urban zones, aiming to identify areas with varying levels of UHI impact. The framework is designed to assist urban planners and designers in understanding the spatial distribution of UHI and identifying areas where urban forestry initiatives can be strategically implemented to mitigate its effect. Conducted in various London areas, the research provides a comprehensive analysis of the intricate relationship between urban and community forestry and UHI. By mapping the spatial variability of UHI, the framework offers a novel approach to enhancing urban environmental design and advancing urban forestry studies. The study’s findings are expected to provide valuable insights for urban planners and policymakers, aiding in creating healthier and more livable urban environments through informed decision-making in urban forestry management.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01772-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban and community forestry is a specialized discipline focused on the meticulous management of trees and forests within urban, suburban, and town environments. This field often entails extensive civic involvement and collaborative partnerships with institutions. Its overarching objectives span a spectrum from preserving water quality, habitat, and biodiversity to mitigating the Urban Heat Island (UHI) effect. The UHI phenomenon, characterized by notably higher temperatures in urban areas compared to rural counterparts due to heat absorption by urban infrastructure and limited urban forest coverage, serves as a focal point in this study. The study focuses on developing a methodological framework that integrates Geographically Weighted Regression (GWR), Random Forest (RF), and Suitability Analysis to assess the Urban Heat Island (UHI) effect across different urban zones, aiming to identify areas with varying levels of UHI impact. The framework is designed to assist urban planners and designers in understanding the spatial distribution of UHI and identifying areas where urban forestry initiatives can be strategically implemented to mitigate its effect. Conducted in various London areas, the research provides a comprehensive analysis of the intricate relationship between urban and community forestry and UHI. By mapping the spatial variability of UHI, the framework offers a novel approach to enhancing urban environmental design and advancing urban forestry studies. The study’s findings are expected to provide valuable insights for urban planners and policymakers, aiding in creating healthier and more livable urban environments through informed decision-making in urban forestry management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过地理设计框架提高气候复原力:加强城市和社区林业,促进可持续环境设计
城市和社区林业是一门专门学科,侧重于对城市、郊区和城镇环境中的树木和森林进行精细管理。这一领域通常需要广泛的公民参与以及与机构的合作。其总体目标涵盖了从保护水质、栖息地和生物多样性到减轻城市热岛效应(UHI)等多个方面。城市热岛效应的特点是,由于城市基础设施吸热和城市森林覆盖率有限,城市地区的气温明显高于农村地区。本研究的重点是开发一个方法框架,将地理加权回归(GWR)、随机森林(RF)和适宜性分析整合在一起,以评估不同城市区域的城市热岛(UHI)效应,目的是确定具有不同程度 UHI 影响的区域。该框架旨在帮助城市规划者和设计者了解 UHI 的空间分布,并确定在哪些地区可以战略性地实施城市森林计划,以减轻 UHI 的影响。该研究在伦敦多个地区进行,全面分析了城市和社区林业与超高温影响之间错综复杂的关系。通过绘制特高气温指数的空间变化图,该框架为加强城市环境设计和推进城市林业研究提供了一种新方法。研究结果有望为城市规划者和政策制定者提供有价值的见解,通过城市林业管理的明智决策,帮助创造更健康、更宜居的城市环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
3.30%
发文量
2538
期刊介绍: The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects: Basic Science of Forestry, Forest biometrics, Forest soils, Forest hydrology, Tree physiology, Forest biomass, carbon, and bioenergy, Forest biotechnology and molecular biology, Forest Ecology, Forest ecology, Forest ecological services, Restoration ecology, Forest adaptation to climate change, Wildlife ecology and management, Silviculture and Forest Management, Forest genetics and tree breeding, Silviculture, Forest RS, GIS, and modeling, Forest management, Forest Protection, Forest entomology and pathology, Forest fire, Forest resources conservation, Forest health monitoring and assessment, Wood Science and Technology, Wood Science and Technology.
期刊最新文献
Applying palaeoecological analogues to contemporary challenges: community-level effects of canopy gaps caused by systematic decline of a prevalent tree species A stacking-based model for the spread of Botryosphaeria laricina Leaf functional traits and ecological strategies of common plant species in evergreen broad-leaved forests on Huangshan Mountain Characteristics and expression of heat shock gene Lghsp17.4 in Lenzites gibbosa, a white rot fungus of wood Tree diversity drives understory carbon storage rather than overstory carbon storage across forest types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1