The Role of Talus Pile Mobility in Valley Widening Processes and the Development of Wide Bedrock Valleys, Buffalo River, AR

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-08-10 DOI:10.1029/2023JF007612
O. H. Groeber, A. L. Langston
{"title":"The Role of Talus Pile Mobility in Valley Widening Processes and the Development of Wide Bedrock Valleys, Buffalo River, AR","authors":"O. H. Groeber,&nbsp;A. L. Langston","doi":"10.1029/2023JF007612","DOIUrl":null,"url":null,"abstract":"<p>Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JF007612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JF007612","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Valley width is largely controlled by lithology and upstream drainage area, but little work has focused on identifying the processes through which valleys widen. Bedrock valleys widen by first laterally eroding bedrock valley walls, followed by the collapse of overlying bedrock material that must then be transported away from the valley wall before the valley can continue widening. We hypothesize that talus piles that cannot be transported by the river protect the valley wall and slow valley widening, while talus piles that are rapidly transported allow for uninterrupted valley widening. We used field measurements from 40 locations in both wide and narrow valleys along the Buffalo River, AR to test this hypothesis. Our data show that wide valleys tend to have fewer talus piles and smaller talus grain sizes, whereas talus in narrow valleys is larger in size and more continuous along valley walls. We calculated potential talus block entrainment at each site location and found that talus blocks in wide valleys are potentially entrained and moved away from valley walls during moderate and large flood events, whereas talus blocks in narrow valleys are very rarely moved. Our results show that the potential transport of talus piles protecting bedrock valley walls from widening is controlled by the block size of collapsed bedrock wall material relative to stream competency. Our results also suggest that persistence versus mobility of collapsed talus piles is an important process in the development of wide bedrock valleys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
距石桩流动性在山谷拓宽过程和宽基岩山谷发育中的作用,阿肯色州布法罗河
山谷宽度在很大程度上受岩性和上游排水面积的控制,但很少有人关注山谷拓宽的过程。基岩河谷首先通过横向侵蚀基岩谷壁来拓宽,然后是上覆基岩材料的崩塌,在河谷继续拓宽之前,上覆基岩材料必须被运离谷壁。我们假设,无法被河流搬运的滑石堆积物可以保护谷壁,减缓山谷的拓宽,而快速搬运的滑石堆积物则可以使山谷不间断地拓宽。我们利用对 AR 州布法罗河沿岸宽谷和窄谷 40 个地点的实地测量来验证这一假设。我们的数据显示,宽谷中的距石堆往往较少,距石粒径较小,而窄谷中的距石粒径较大,沿谷壁的连续性较强。我们计算了每个地点的潜在滑石块夹带量,发现在中度和大洪水期间,宽谷中的滑石块有可能被夹带并移离谷壁,而窄谷中的滑石块则很少移动。我们的研究结果表明,保护基岩谷壁不被拓宽的距石堆的潜在迁移能力受基岩谷壁坍塌物质的块体大小和溪流能力的控制。我们的研究结果还表明,坍塌距石堆的持久性与流动性是宽基岩谷发展的一个重要过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Issue Information Enhancing 4-D Landslide Monitoring and Block Interaction Analysis With a Novel Kalman-Filter-Based InSAR Approach Downstream Control on the Stability of River Bifurcations Dynamic Thermomechanical Modeling of Rock-Ice Avalanches: Understanding Flow Transitions, Water Dynamics, and Uncertainties Calving Dynamics and the Potential Impact of Mélange Buttressing at the Western Calving Front of Thwaites Glacier, West Antarctica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1