Tao Tan, Hong Xie, Yunni Xia, Xiaoyu Shi, Mingsheng Shang
{"title":"Adaptive moving average Q-learning","authors":"Tao Tan, Hong Xie, Yunni Xia, Xiaoyu Shi, Mingsheng Shang","doi":"10.1007/s10115-024-02190-8","DOIUrl":null,"url":null,"abstract":"<p>A variety of algorithms have been proposed to address the long-standing overestimation bias problem of Q-learning. Reducing this overestimation bias may lead to an underestimation bias, such as double Q-learning. However, it is still unclear how to make a good balance between overestimation and underestimation. We present a simple yet effective algorithm to fill in this gap and call Moving Average Q-learning. Specifically, we maintain two dependent Q-estimators. The first one is used to estimate the maximum expected Q-value. The second one is used to select the optimal action. In particular, the second estimator is the moving average of historical Q-values generated by the first estimator. The second estimator has only one hyperparameter, namely the moving average parameter. This parameter controls the dependence between the second estimator and the first estimator, ranging from independent to identical. Based on Moving Average Q-learning, we design an adaptive strategy to select the moving average parameter, resulting in AdaMA (<u>Ada</u>ptive <u>M</u>oving <u>A</u>verage) Q-learning. This adaptive strategy is a simple function, where the moving average parameter increases monotonically with the number of state–action pairs visited. Moreover, we extend AdaMA Q-learning to AdaMA DQN in high-dimensional environments. Extensive experiment results reveal why Moving Average Q-learning and AdaMA Q-learning can mitigate the overestimation bias, and also show that AdaMA Q-learning and AdaMA DQN outperform SOTA baselines drastically. In particular, when compared with the overestimated value of 1.66 in Q-learning, AdaMA Q-learning underestimates by 0.196, resulting in an improvement of 88.19%.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"372 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02190-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A variety of algorithms have been proposed to address the long-standing overestimation bias problem of Q-learning. Reducing this overestimation bias may lead to an underestimation bias, such as double Q-learning. However, it is still unclear how to make a good balance between overestimation and underestimation. We present a simple yet effective algorithm to fill in this gap and call Moving Average Q-learning. Specifically, we maintain two dependent Q-estimators. The first one is used to estimate the maximum expected Q-value. The second one is used to select the optimal action. In particular, the second estimator is the moving average of historical Q-values generated by the first estimator. The second estimator has only one hyperparameter, namely the moving average parameter. This parameter controls the dependence between the second estimator and the first estimator, ranging from independent to identical. Based on Moving Average Q-learning, we design an adaptive strategy to select the moving average parameter, resulting in AdaMA (Adaptive Moving Average) Q-learning. This adaptive strategy is a simple function, where the moving average parameter increases monotonically with the number of state–action pairs visited. Moreover, we extend AdaMA Q-learning to AdaMA DQN in high-dimensional environments. Extensive experiment results reveal why Moving Average Q-learning and AdaMA Q-learning can mitigate the overestimation bias, and also show that AdaMA Q-learning and AdaMA DQN outperform SOTA baselines drastically. In particular, when compared with the overestimated value of 1.66 in Q-learning, AdaMA Q-learning underestimates by 0.196, resulting in an improvement of 88.19%.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.