A review of the development of graphene-incorporated dye-sensitized solar cells

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-08-11 DOI:10.1007/s11581-024-05752-6
T.M.W.J. Bandara, S.M.S. Gunathilake, M.A.K.L. Dissanayake, B.M.K. Pemasiri, I. Albinsson, B.-E. Mellander
{"title":"A review of the development of graphene-incorporated dye-sensitized solar cells","authors":"T.M.W.J. Bandara, S.M.S. Gunathilake, M.A.K.L. Dissanayake, B.M.K. Pemasiri, I. Albinsson, B.-E. Mellander","doi":"10.1007/s11581-024-05752-6","DOIUrl":null,"url":null,"abstract":"<p>To utilize abundant solar energy, dye-sensitized solar cells (DSSCs) have attracted researchers’ attention due to many reasons, such as low production costs, easy fabrication methods, low toxicity of the materials, and relatively high-power conversion efficiencies. The use of expensive metal-dye complexes, the lack of long-term stability due to the use of liquid electrolytes, and the use of rare and expensive Pt as the CE are the major drawbacks preventing the large-scale production of DSSCs. However, recent studies showed alternative materials can be used to enhance the DSSC performance. The unique properties of graphene make it an ideal additive to improve the functions of all three components of DSSCs. Graphene’s high optical transmittance and electron mobility are suitable to improve transparent conducting substrates and nanostructured wide bandgap semiconductor layers of the photoelectrode. Graphene quantum dots have a wide absorption spectrum and thus can be used as photosensitizers. High catalytic activity, high electrical conductivity, high corrosion resistance, and a larger specific surface area make graphene and its composites suitable for making CEs. In addition, graphene has been used to improve composite electrolytes intended for DSSCs. Considering all these facts, this article reviews the recent developments and applications of graphene-based materials in photoelectrodes, electrolytes and CEs and the possible uses of graphene to improve DSSCs.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05752-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To utilize abundant solar energy, dye-sensitized solar cells (DSSCs) have attracted researchers’ attention due to many reasons, such as low production costs, easy fabrication methods, low toxicity of the materials, and relatively high-power conversion efficiencies. The use of expensive metal-dye complexes, the lack of long-term stability due to the use of liquid electrolytes, and the use of rare and expensive Pt as the CE are the major drawbacks preventing the large-scale production of DSSCs. However, recent studies showed alternative materials can be used to enhance the DSSC performance. The unique properties of graphene make it an ideal additive to improve the functions of all three components of DSSCs. Graphene’s high optical transmittance and electron mobility are suitable to improve transparent conducting substrates and nanostructured wide bandgap semiconductor layers of the photoelectrode. Graphene quantum dots have a wide absorption spectrum and thus can be used as photosensitizers. High catalytic activity, high electrical conductivity, high corrosion resistance, and a larger specific surface area make graphene and its composites suitable for making CEs. In addition, graphene has been used to improve composite electrolytes intended for DSSCs. Considering all these facts, this article reviews the recent developments and applications of graphene-based materials in photoelectrodes, electrolytes and CEs and the possible uses of graphene to improve DSSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯掺杂染料敏化太阳能电池发展综述
为了利用丰富的太阳能,染料敏化太阳能电池(DSSC)以其低廉的生产成本、简便的制造方法、材料的低毒性以及相对较高的功率转换效率等诸多优势吸引了研究人员的关注。使用昂贵的金属-染料复合物、使用液态电解质导致缺乏长期稳定性以及使用稀有昂贵的铂作为CE是阻碍大规模生产DSSC的主要缺点。然而,最近的研究表明,可以使用替代材料来提高 DSSC 的性能。石墨烯的独特性能使其成为一种理想的添加剂,可改善 DSSC 所有三种成分的功能。石墨烯的高透光率和电子迁移率适用于改善透明导电基底和光电极的纳米结构宽带隙半导体层。石墨烯量子点具有较宽的吸收光谱,因此可用作光敏剂。石墨烯及其复合材料具有高催化活性、高导电性、高耐腐蚀性和较大的比表面积,因此适合制造 CE。此外,石墨烯还被用于改进 DSSC 的复合电解质。考虑到所有这些事实,本文回顾了石墨烯基材料在光电极、电解质和 CE 方面的最新发展和应用,以及石墨烯在改进 DSSC 方面的可能用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Eco-inspired synthesis of ZnO/CuO nanocomposites using Phyllanthus niruri: unveiling superior photocatalytic, antibacterial efficacy against Escherichia coli and Staphylococcus aureus, and latent fingerprint studies Investigation of Sr doping effect on oxygen ion de-localization in Gd2Ti2O7 pyrochlore system and its influence on charge relaxation dynamics and ionic conductivity: as electrolyte for IT-SOFCs Structural, electrical, and electrochemical investigations on Cu2+ ion–conducting PVA/HPMC-based blend solid polymer electrolytes Solvent-engineered ZIF-67-derived cobalt-embedded carbon as polysulfide trapping host for high-stability Li–S battery Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1