Designing sampled data controller for time-delayed fractional-order neural networks via a new functional approach

N. Padmaja
{"title":"Designing sampled data controller for time-delayed fractional-order neural networks via a new functional approach","authors":"N. Padmaja","doi":"10.1140/epjs/s11734-024-01261-9","DOIUrl":null,"url":null,"abstract":"<p>The main focus of this manuscript is vested in the introduction of a new Lyapunov–Krasovskii functional (LKF) for hybrid fractional-order neural networks (FONNs) with Lipschitz non-linearity. The primary originality of this work lies in exploring the possibility of using a new type of functionals similar to looped functional for the stability analysis of hybrid fractional-order systems (FOSs) with delays. Although some work in this direction has been attempted, the formal theory for this concept has not been developed yet. First, a new lemma on establishing asymptotic stability using an arbitrary looped-like LKF and the fractional-order Lyapunov direct method is derived. Using this result, new delay and sampling period dependent stability criteria for the considered FONNs are established in the form of LMIs. Lastly, numerical simulations validate the correctness of the theoretical results proposed in this manuscript.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01261-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main focus of this manuscript is vested in the introduction of a new Lyapunov–Krasovskii functional (LKF) for hybrid fractional-order neural networks (FONNs) with Lipschitz non-linearity. The primary originality of this work lies in exploring the possibility of using a new type of functionals similar to looped functional for the stability analysis of hybrid fractional-order systems (FOSs) with delays. Although some work in this direction has been attempted, the formal theory for this concept has not been developed yet. First, a new lemma on establishing asymptotic stability using an arbitrary looped-like LKF and the fractional-order Lyapunov direct method is derived. Using this result, new delay and sampling period dependent stability criteria for the considered FONNs are established in the form of LMIs. Lastly, numerical simulations validate the correctness of the theoretical results proposed in this manuscript.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过新函数方法为时延分数阶神经网络设计采样数据控制器
本手稿的重点在于为具有 Lipschitz 非线性的混合分数阶神经网络(FONN)引入一种新的 Lyapunov-Krasovskii 函数(LKF)。这项工作的主要独创性在于探索使用类似于循环函数的新型函数来分析具有延迟的混合分数阶系统(FOS)稳定性的可能性。虽然在这个方向上已经有了一些尝试,但这个概念的正式理论还没有发展起来。首先,利用任意环状 LKF 和分数阶 Lyapunov 直接法推导出了一个关于建立渐近稳定性的新公理。利用这一结果,以 LMI 的形式为所考虑的 FONN 建立了新的延迟和采样周期相关稳定性准则。最后,数值模拟验证了本手稿中提出的理论结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1