Deterministic-like data-driven discovery of stochastic differential equations via the Feynman–Kac formalism

Chaoxiang Ma, Cheng Huang, Cheng Cheng, Xiuting Li
{"title":"Deterministic-like data-driven discovery of stochastic differential equations via the Feynman–Kac formalism","authors":"Chaoxiang Ma, Cheng Huang, Cheng Cheng, Xiuting Li","doi":"10.1140/epjs/s11734-024-01270-8","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a data-driven deterministic identification architecture for discovering stochastic differential equations (SDEs) directly from data. The architecture first generates deterministic data for stochastic processes using the Feynman–Kac formula, and gives a parabolic partial differential equation (PDE) associated with the SDE. Then, a sparse regression model is proposed to discover drift and diffusion terms in SDEs using PDE data-driven techniques, where a large candidate library of potential terms only for the drift and diffusion coefficients in SDEs need be constructed. To simultaneously infer the drift and diffusion terms, we proposed a sequential thresholded reweighted least-squares algorithm to solve the constructed sparse regression model. The main advantage of the proposed method is that on the one hand, theoretical and numerical identification results of PDEs can be used for SDEs, on the score, our SDE identification problem is translated into the parameter estimation problem of PDEs, on the other hand, the proposed algorithm is easily executed and can enhance the sparsity and accuracy. Through several classical SDEs and ordinary differential equations, the effectiveness of the proposed data-driven method is demonstrated, and several comparison experiments with state-of-the-art approaches is provided to illustrate the superiority of the developed algorithm.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01270-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a data-driven deterministic identification architecture for discovering stochastic differential equations (SDEs) directly from data. The architecture first generates deterministic data for stochastic processes using the Feynman–Kac formula, and gives a parabolic partial differential equation (PDE) associated with the SDE. Then, a sparse regression model is proposed to discover drift and diffusion terms in SDEs using PDE data-driven techniques, where a large candidate library of potential terms only for the drift and diffusion coefficients in SDEs need be constructed. To simultaneously infer the drift and diffusion terms, we proposed a sequential thresholded reweighted least-squares algorithm to solve the constructed sparse regression model. The main advantage of the proposed method is that on the one hand, theoretical and numerical identification results of PDEs can be used for SDEs, on the score, our SDE identification problem is translated into the parameter estimation problem of PDEs, on the other hand, the proposed algorithm is easily executed and can enhance the sparsity and accuracy. Through several classical SDEs and ordinary differential equations, the effectiveness of the proposed data-driven method is demonstrated, and several comparison experiments with state-of-the-art approaches is provided to illustrate the superiority of the developed algorithm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过费曼-卡克(Feynman-Kac)形式主义,以类似确定性的数据驱动发现随机微分方程
本文开发了一种数据驱动的确定性识别架构,用于直接从数据中发现随机微分方程(SDE)。该架构首先使用费曼-卡克公式生成随机过程的确定性数据,并给出与 SDE 相关的抛物线偏微分方程 (PDE)。然后,提出一个稀疏回归模型,利用 PDE 数据驱动技术发现 SDE 中的漂移和扩散项,在此过程中,需要构建一个庞大的候选项库,仅用于 SDE 中的漂移和扩散系数。为了同时推断出漂移和扩散项,我们提出了一种顺序阈值重加权最小二乘法算法来求解所构建的稀疏回归模型。所提方法的主要优势在于:一方面,PDE 的理论和数值识别结果可用于 SDE;另一方面,我们将 SDE 识别问题转化为 PDE 的参数估计问题。通过几个经典的 SDE 和常微分方程,证明了所提出的数据驱动方法的有效性,并提供了几个与最先进方法的对比实验,以说明所开发算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1