Lithium Solid Electrolyte-Gated Oxide Transistors-Based Schmitt Trigger With High Thermal Resistance

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-09 DOI:10.1109/LED.2024.3441054
Zhiyuan Luo;Zhengdong Jiang;Kekang Liu;Peicheng Jiao;Yanghui Liu
{"title":"Lithium Solid Electrolyte-Gated Oxide Transistors-Based Schmitt Trigger With High Thermal Resistance","authors":"Zhiyuan Luo;Zhengdong Jiang;Kekang Liu;Peicheng Jiao;Yanghui Liu","doi":"10.1109/LED.2024.3441054","DOIUrl":null,"url":null,"abstract":"Electrolyte-gated transistors (EGTs) can operate at very low voltages owing to their large electric-double-layer capacitance. However, the evaporation of water in the electrolyte can lead to electrolyte failure in harsh high-temperature environments resulting in a decrease in the electrical performance of EGTs. Meanwhile, oxide-based lithium solid-state electrolytes exhibit excellent thermal stability due to high oxygen loss and thermal decomposition temperature. In this work, we utilized LiPON solid-state electrolytes as the gate dielectrics to fabricate a high-temperature resistant EGT, which achieved high mobility of 32.87 cm\n<sup>2</sup>\n V\n<sup>−1</sup>\n s\n<sup>−1</sup>\n under 393 K. Moreover, we developed a Schmitt trigger due to the large hysteresis window of the LiPON EGT at high temperatures. The switching speed and shape pulse wave ability of the Schmitt trigger have been improved compared to room temperature. These findings offer high-temperature applications of LiPON electrolyte in electrochemical sensors and neuromorphic systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10632164/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte-gated transistors (EGTs) can operate at very low voltages owing to their large electric-double-layer capacitance. However, the evaporation of water in the electrolyte can lead to electrolyte failure in harsh high-temperature environments resulting in a decrease in the electrical performance of EGTs. Meanwhile, oxide-based lithium solid-state electrolytes exhibit excellent thermal stability due to high oxygen loss and thermal decomposition temperature. In this work, we utilized LiPON solid-state electrolytes as the gate dielectrics to fabricate a high-temperature resistant EGT, which achieved high mobility of 32.87 cm 2 V −1 s −1 under 393 K. Moreover, we developed a Schmitt trigger due to the large hysteresis window of the LiPON EGT at high temperatures. The switching speed and shape pulse wave ability of the Schmitt trigger have been improved compared to room temperature. These findings offer high-temperature applications of LiPON electrolyte in electrochemical sensors and neuromorphic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于锂固体电解质门控氧化物晶体管的高热阻施密特触发器
电解质门控晶体管(EGT)由于具有较大的双层电容,因此可以在很低的电压下工作。然而,在恶劣的高温环境中,电解质中水分的蒸发会导致电解质失效,从而降低 EGT 的电气性能。与此同时,氧化物基锂固态电解质具有较高的氧损耗和热分解温度,因而具有出色的热稳定性。在这项工作中,我们利用锂固态电解质作为栅极电介质,制造出了耐高温的 EGT,在 393 K 下实现了 32.87 cm2 V-1 s-1 的高迁移率。与室温相比,施密特触发器的开关速度和形脉冲波能力都有所提高。这些发现为 LiPON 电解质在电化学传感器和神经形态系统中的高温应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1