Extremely Thin Proximity Platinum Silicide Formation Process Using Continuous-Wave Laser Scanning Anneal

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-08-09 DOI:10.1109/LED.2024.3440910
Seung-Mo Kim;Min Gyu Kwon;Minjae Kim;Chan Bin Lee;Ki Sung Kim;Hyeon Jun Hwang;Joon Kim;Byoung Hun Lee
{"title":"Extremely Thin Proximity Platinum Silicide Formation Process Using Continuous-Wave Laser Scanning Anneal","authors":"Seung-Mo Kim;Min Gyu Kwon;Minjae Kim;Chan Bin Lee;Ki Sung Kim;Hyeon Jun Hwang;Joon Kim;Byoung Hun Lee","doi":"10.1109/LED.2024.3440910","DOIUrl":null,"url":null,"abstract":"Series resistance reduction becomes a very difficult challenge for extremely scaled MOSFETs. Proximity silicidation has been widely investigated to form a thin silicide as close to the gate edge as possible, but inherent nonuniformity of the silicide thickness was the limiting factor for practical application. In this work, a novel silicidation process primarily heats the metal layer first using a continuous-wave laser scanning anneal to confine the silicidation process only to the interface of the silicon substrate and the metal layer. As a result, a 2-nm-thick layer of platinum silicide was formed. The resistivity of platinum silicide was \n<inline-formula> <tex-math>$52.5~\\mu \\Omega \\cdot $ </tex-math></inline-formula>\ncm, similar to the results obtained using the rapid thermal annealing process. It will be possible to realize true proximity silicidation using the continuous-wave laser scanning anneal process.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1941-1944"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10632201/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Series resistance reduction becomes a very difficult challenge for extremely scaled MOSFETs. Proximity silicidation has been widely investigated to form a thin silicide as close to the gate edge as possible, but inherent nonuniformity of the silicide thickness was the limiting factor for practical application. In this work, a novel silicidation process primarily heats the metal layer first using a continuous-wave laser scanning anneal to confine the silicidation process only to the interface of the silicon substrate and the metal layer. As a result, a 2-nm-thick layer of platinum silicide was formed. The resistivity of platinum silicide was $52.5~\mu \Omega \cdot $ cm, similar to the results obtained using the rapid thermal annealing process. It will be possible to realize true proximity silicidation using the continuous-wave laser scanning anneal process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用连续波激光扫描退火技术的极薄近邻硅化铂形成工艺
降低串联电阻对于超大规模的 MOSFET 来说是一项非常艰巨的挑战。为了在尽可能靠近栅极边缘的地方形成薄的硅化物,近距离硅化工艺已被广泛研究,但硅化物厚度固有的不均匀性是实际应用的限制因素。在这项工作中,一种新型硅化工艺主要是利用连续波激光扫描退火技术先加热金属层,从而将硅化过程限制在硅衬底和金属层的界面上。因此,形成了 2 纳米厚的硅化铂层。硅化铂的电阻率为52.5~\mu \Omega \cdot $ cm,与快速热退火工艺得到的结果相似。使用连续波激光扫描退火工艺将有可能实现真正的近距离硅化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications IEEE Electron Device Letters Information for Authors IEEE Transactions on Electron Devices Table of Contents EDS Meetings Calendar 2025 Index IEEE Electron Device Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1