Anomaly detection based on system text logs of virtual network functions

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-02 DOI:10.1016/j.bdr.2024.100485
Daniela N. Rim , DongNyeong Heo , Chungjun Lee , Sukhyun Nam , Jae-Hyoung Yoo , James Won-Ki Hong , Heeyoul Choi
{"title":"Anomaly detection based on system text logs of virtual network functions","authors":"Daniela N. Rim ,&nbsp;DongNyeong Heo ,&nbsp;Chungjun Lee ,&nbsp;Sukhyun Nam ,&nbsp;Jae-Hyoung Yoo ,&nbsp;James Won-Ki Hong ,&nbsp;Heeyoul Choi","doi":"10.1016/j.bdr.2024.100485","DOIUrl":null,"url":null,"abstract":"<div><p>In virtual network environments building secure and effective systems is crucial for its correct functioning, and so the anomaly detection task is at its core. To uncover and predict abnormalities in the behavior of a virtual machine, it is desirable to extract relevant information from system text logs. The main issue is that text is unstructured and symbolic data, and also very expensive to process. However, recent advances in deep learning have shown remarkable capabilities of handling such data. In this work, we propose using a simple LSTM recurrent network on top of a pre-trained Sentence-BERT, which encodes the system logs into fixed-length vectors. We trained the model in an unsupervised fashion to learn the likelihood of the represented sequences of logs. This way, the model can trigger a warning with an accuracy of 81% when a virtual machine generates an abnormal sequence. Our model approach is not only easy to train and computationally cheap, it also generalizes to the content of any input.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In virtual network environments building secure and effective systems is crucial for its correct functioning, and so the anomaly detection task is at its core. To uncover and predict abnormalities in the behavior of a virtual machine, it is desirable to extract relevant information from system text logs. The main issue is that text is unstructured and symbolic data, and also very expensive to process. However, recent advances in deep learning have shown remarkable capabilities of handling such data. In this work, we propose using a simple LSTM recurrent network on top of a pre-trained Sentence-BERT, which encodes the system logs into fixed-length vectors. We trained the model in an unsupervised fashion to learn the likelihood of the represented sequences of logs. This way, the model can trigger a warning with an accuracy of 81% when a virtual machine generates an abnormal sequence. Our model approach is not only easy to train and computationally cheap, it also generalizes to the content of any input.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟网络功能系统文本日志的异常检测
在虚拟网络环境中,建立安全有效的系统对于系统的正常运行至关重要,因此异常检测任务是其核心。要发现和预测虚拟机行为的异常,最好是从系统文本日志中提取相关信息。主要问题在于,文本是非结构化的符号数据,处理起来也非常昂贵。然而,深度学习的最新进展已经显示出处理此类数据的卓越能力。在这项工作中,我们建议在预先训练好的 Sentence-BERT 基础上使用简单的 LSTM 循环网络,将系统日志编码为固定长度的向量。我们以无监督方式训练该模型,以学习所代表日志序列的可能性。这样,当虚拟机产生异常序列时,该模型能以 81% 的准确率触发警告。我们的模型方法不仅易于训练且计算成本低廉,还能泛化到任何输入内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1