Adaptive rank-based tests for high dimensional mean problems

Pub Date : 2024-07-26 DOI:10.1016/j.spl.2024.110226
Yu Zhang, Long Feng
{"title":"Adaptive rank-based tests for high dimensional mean problems","authors":"Yu Zhang,&nbsp;Long Feng","doi":"10.1016/j.spl.2024.110226","DOIUrl":null,"url":null,"abstract":"<div><p>The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney test are commonly employed in one sample and two sample mean tests for one-dimensional hypothesis problems. For high-dimensional mean test problems, we calculate the asymptotic distribution of the maximum of rank statistics for each variable and suggest a max-type test. This max-type test is then merged with a sum-type test, based on their asymptotic independence offered by stationary and strong mixing assumptions. Our numerical studies reveal that this combined test demonstrates robustness and superiority over other methods, especially for heavy-tailed distributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
针对高维均值问题的自适应秩检验
Wilcoxon 符号秩检验和 Wilcoxon-Mann-Whitney 检验常用于一维假设问题的单样本和双样本均值检验。对于高维均值检验问题,我们会计算每个变量秩统计量最大值的渐近分布,并建议采用最大值类型检验。然后,基于静态假设和强混合假设提供的渐近独立性,将这种最大类型检验与和类型检验合并。我们的数值研究表明,与其他方法相比,这种组合检验具有稳健性和优越性,特别是对于重尾分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1