首页 > 最新文献

Statistics & Probability Letters最新文献

英文 中文
Semi-supervised estimation of a single-index varying-coefficient model 单指标变系数模型的半监督估计
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-27 DOI: 10.1016/j.spl.2024.110312
Peng Lai, Zhou Wang, Yurong Zhang
We introduce a single-index varying-coefficient model for the Framingham heart disease data and propose a semi-supervised estimation method that effectively utilizes unlabeled data. The method outperforms traditional approaches in accuracy, as validated by simulations and real examples.
我们对Framingham心脏病数据引入了单指标变系数模型,并提出了一种有效利用未标记数据的半监督估计方法。仿真和实例验证了该方法在精度上优于传统方法。
{"title":"Semi-supervised estimation of a single-index varying-coefficient model","authors":"Peng Lai,&nbsp;Zhou Wang,&nbsp;Yurong Zhang","doi":"10.1016/j.spl.2024.110312","DOIUrl":"10.1016/j.spl.2024.110312","url":null,"abstract":"<div><div>We introduce a single-index varying-coefficient model for the Framingham heart disease data and propose a semi-supervised estimation method that effectively utilizes unlabeled data. The method outperforms traditional approaches in accuracy, as validated by simulations and real examples.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110312"},"PeriodicalIF":0.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Berry–Esseen expansion and Cramér-type large deviation for run and tumble particles on one dimension 一维上运行和翻滚颗粒的Berry-Esseen膨胀和cram<s:1>型大偏差
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-26 DOI: 10.1016/j.spl.2024.110308
Wenxuan Chen, Zhi Qu
In this paper, we consider the run and tumble particles on one-dimensional lattice Z. We derive Berry–Esseen bound for the active particle. Moreover, we also obtain the Cramér-type large deviation when the particle evolves on the discrete time set N.
本文考虑一维晶格z上的奔跑和翻滚粒子,导出了活动粒子的Berry-Esseen界。此外,我们还得到了粒子在离散时间集N上演化时的cramsamir -type大偏差。
{"title":"Berry–Esseen expansion and Cramér-type large deviation for run and tumble particles on one dimension","authors":"Wenxuan Chen,&nbsp;Zhi Qu","doi":"10.1016/j.spl.2024.110308","DOIUrl":"10.1016/j.spl.2024.110308","url":null,"abstract":"<div><div>In this paper, we consider the run and tumble particles on one-dimensional lattice <span><math><mi>Z</mi></math></span>. We derive Berry–Esseen bound for the active particle. Moreover, we also obtain the Cramér-type large deviation when the particle evolves on the discrete time set <span><math><mi>N</mi></math></span>.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110308"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is the effective sample size always less than n? A spatial regression approach 有效样本量总是小于n吗?空间回归方法
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-26 DOI: 10.1016/j.spl.2024.110309
Clemente Ferrer, Ronny Vallejos
In this paper, within a spatial statistics framework, we present an upper bound for the effective sample size (ESS) as defined by Vallejos and Osorio (2014), addressing a research gap regarding the mathematical properties of the ESS. There are certain correlation structures for which the ESS exceeds n, which is inconsistent with the maximum possible sample size. Our approach identifies conditions on the correlation matrix of a spatial process that ensure that the equivalent number of independent and identically distributed observations within a spatial sample of size n does not exceed n. This property is desirable because it ensures the effectiveness of reduction measures.
在本文中,在空间统计框架内,我们提出了由Vallejos和Osorio(2014)定义的有效样本量(ESS)的上限,解决了关于ESS数学性质的研究空白。存在ESS超过n的某些相关结构,这与最大可能样本量不一致。我们的方法确定了空间过程相关矩阵上的条件,这些条件确保在大小为n的空间样本中独立且相同分布的观测值的等效数量不超过n。这种性质是可取的,因为它确保了减少措施的有效性。
{"title":"Is the effective sample size always less than n? A spatial regression approach","authors":"Clemente Ferrer,&nbsp;Ronny Vallejos","doi":"10.1016/j.spl.2024.110309","DOIUrl":"10.1016/j.spl.2024.110309","url":null,"abstract":"<div><div>In this paper, within a spatial statistics framework, we present an upper bound for the effective sample size (ESS) as defined by Vallejos and Osorio (2014), addressing a research gap regarding the mathematical properties of the ESS. There are certain correlation structures for which the ESS exceeds <span><math><mi>n</mi></math></span>, which is inconsistent with the maximum possible sample size. Our approach identifies conditions on the correlation matrix of a spatial process that ensure that the equivalent number of independent and identically distributed observations within a spatial sample of size <span><math><mi>n</mi></math></span> does not exceed <span><math><mi>n</mi></math></span>. This property is desirable because it ensures the effectiveness of reduction measures.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110309"},"PeriodicalIF":0.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On exact Bayesian credible sets for discrete parameters 关于离散参数的精确贝叶斯可信集
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-22 DOI: 10.1016/j.spl.2024.110295
Chaegeun Song, Bing Li
We introduce a generalized Bayesian credible set that can achieve any preassigned credible level, addressing a limitation of the current credible sets. This is achieved by exploiting a connection between the highest posterior density set and the Neyman–Pearson lemma.
我们引入了一种广义贝叶斯可信集,它可以达到任何预先指定的可信度,解决了当前可信集的局限性。这是通过利用最高后验密度集与奈曼-皮尔逊(Neyman-Pearson)两难之间的联系实现的。
{"title":"On exact Bayesian credible sets for discrete parameters","authors":"Chaegeun Song,&nbsp;Bing Li","doi":"10.1016/j.spl.2024.110295","DOIUrl":"10.1016/j.spl.2024.110295","url":null,"abstract":"<div><div>We introduce a generalized Bayesian credible set that can achieve any preassigned credible level, addressing a limitation of the current credible sets. This is achieved by exploiting a connection between the highest posterior density set and the Neyman–Pearson lemma.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110295"},"PeriodicalIF":0.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The heavy-tail behavior of the difference of two dependent random variables 两个因变量之差的重尾行为
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-17 DOI: 10.1016/j.spl.2024.110307
Yiqing Chen
Consider Z=XY, the difference of two nonnegative dependent random variables. We investigate how the difference Z inherits the heavy tail property of the minuend X and is altered by the subtrahend Y. In the case where X and Y are tail independent, we prove that if X has a long tail F¯X=1FX, the asymptotic behavior of F¯X is exactly inherited by Z, that is, F¯ZF¯X, regardless of the tail behavior of Y. However, this result may not hold when X and Y exhibit tail dependence. Within the framework of bivariate regular variation, we show that the limit of the ratio F¯ZF¯X can range over the closed interval [0,1].
考虑两个非负自变量的差值 Z=X-Y。在 X 和 Y 尾部无关的情况下,我们证明如果 X 具有长尾 F¯X=1-FX,则无论 Y 的尾部行为如何,F¯X 的渐近行为都会被 Z 完全继承,即 F¯Z∼F¯X。在双变量正则变异的框架内,我们证明了比率 F¯ZF¯X 的极限范围可以是封闭区间 [0,1]。
{"title":"The heavy-tail behavior of the difference of two dependent random variables","authors":"Yiqing Chen","doi":"10.1016/j.spl.2024.110307","DOIUrl":"10.1016/j.spl.2024.110307","url":null,"abstract":"<div><div>Consider <span><math><mrow><mi>Z</mi><mo>=</mo><mi>X</mi><mo>−</mo><mi>Y</mi></mrow></math></span>, the difference of two nonnegative dependent random variables. We investigate how the difference <span><math><mi>Z</mi></math></span> inherits the heavy tail property of the minuend <span><math><mi>X</mi></math></span> and is altered by the subtrahend <span><math><mi>Y</mi></math></span>. In the case where <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are tail independent, we prove that if <span><math><mi>X</mi></math></span> has a long tail <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>X</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span>, the asymptotic behavior of <span><math><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>X</mi></mrow></msub></math></span> is exactly inherited by <span><math><mi>Z</mi></math></span>, that is, <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>Z</mi></mrow></msub><mo>∼</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>X</mi></mrow></msub></mrow></math></span>, regardless of the tail behavior of <span><math><mi>Y</mi></math></span>. However, this result may not hold when <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> exhibit tail dependence. Within the framework of bivariate regular variation, we show that the limit of the ratio <span><math><mfrac><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>Z</mi></mrow></msub></mrow><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>X</mi></mrow></msub></mrow></mfrac></math></span> can range over the closed interval <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"218 ","pages":"Article 110307"},"PeriodicalIF":0.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A supplement to the large deviations of infinite weighted sums of heavy tailed random variables 重尾随机变量无限加权和的大偏差补充
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-14 DOI: 10.1016/j.spl.2024.110306
Jianan Shi , Zhenhong Yu , Yu Miao
Let {X,Xn,n1} be a sequence of independent and identically distributed non-negative random variables with heavy tails and {ai(n),i1,n1} be an array of non-negative numbers. In the present paper, we study the large deviation of infinite weighted sums i=1ai(n)Xi, which is a supplement of Aurzada (2020).
设{X,Xn,n≥1}为独立且同分布的重尾非负随机变量序列,{ai(n),i≥1,n≥1}为非负数数组。本文研究无限加权和 ∑i=1∞ai(n)Xi 的大偏差,是对 Aurzada (2020) 的补充。
{"title":"A supplement to the large deviations of infinite weighted sums of heavy tailed random variables","authors":"Jianan Shi ,&nbsp;Zhenhong Yu ,&nbsp;Yu Miao","doi":"10.1016/j.spl.2024.110306","DOIUrl":"10.1016/j.spl.2024.110306","url":null,"abstract":"<div><div>Let <span><math><mrow><mo>{</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> be a sequence of independent and identically distributed non-negative random variables with heavy tails and <span><math><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> be an array of non-negative numbers. In the present paper, we study the large deviation of infinite weighted sums <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, which is a supplement of Aurzada (2020).</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110306"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On harmonic oscillator hazard functions 关于谐振子危险函数
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-12 DOI: 10.1016/j.spl.2024.110304
J.A. Christen , F.J. Rubio
We propose a parametric hazard model obtained by enforcing positivity in the damped harmonic oscillator. The resulting model has closed-form hazard and cumulative hazard functions, facilitating likelihood and Bayesian inference on the parameters. We show that this model can capture a range of hazard shapes, such as increasing, decreasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the corresponding survival function. We illustrate the use of this model in survival analysis using real data.
我们提出了一个参数危险模型,该模型是通过在阻尼谐波振荡器中强制执行正相关性而获得的。由此产生的模型具有闭式危险和累积危险函数,便于对参数进行似然法和贝叶斯推断。我们表明,该模型可以捕捉一系列危害形状,如递增、递减、单模态、浴缸和振荡模式,并描述了相应生存函数的尾部特征。我们使用真实数据说明了该模型在生存分析中的应用。
{"title":"On harmonic oscillator hazard functions","authors":"J.A. Christen ,&nbsp;F.J. Rubio","doi":"10.1016/j.spl.2024.110304","DOIUrl":"10.1016/j.spl.2024.110304","url":null,"abstract":"<div><div>We propose a parametric hazard model obtained by enforcing positivity in the damped harmonic oscillator. The resulting model has closed-form hazard and cumulative hazard functions, facilitating likelihood and Bayesian inference on the parameters. We show that this model can capture a range of hazard shapes, such as increasing, decreasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the corresponding survival function. We illustrate the use of this model in survival analysis using real data.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110304"},"PeriodicalIF":0.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruin probability approximation for bidimensional Brownian risk model with tax 含税二维布朗风险模型的毁灭概率近似值
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-06 DOI: 10.1016/j.spl.2024.110305
Timofei Shashkov
<div><div>Let <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span> be a two-dimensional Brownian motion with independent components and define the <span><math><mi>γ</mi></math></span>-reflected process <span><span><span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>t</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><munder><mrow><mo>inf</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>]</mo></mrow></mrow></munder><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>t</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><munder><mrow><mo>inf</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>]</mo></mrow></mrow></munder><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></mfenced><mo>,</mo></mrow></math></span></span></span>with given finite constants <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. The goal of this paper is to deri
设 B(t)=(B1(t),B2(t)),t≥0 为具有独立分量的二维布朗运动,并定义 γ 反射过程 X(t)=(X1(t)、X2(t))=B1(t)-c1t-γ1infs1∈[0,t](B1(s1)-c1s1),B2(t)-c2t-γ2infs2∈[0,t](B2(s2)-c2s2),给定有限常数 c1,c2∈R 和 γ1,γ2∈[0,2)。本文的目标是推导破坏概率 P∃t∈[0,T]:X1(t)>u,X2(t)>auas u→∞ 对于 T>0 的渐近线。
{"title":"Ruin probability approximation for bidimensional Brownian risk model with tax","authors":"Timofei Shashkov","doi":"10.1016/j.spl.2024.110305","DOIUrl":"10.1016/j.spl.2024.110305","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a two-dimensional Brownian motion with independent components and define the &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-reflected process &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;with given finite constants &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The goal of this paper is to deri","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110305"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strict monotonicity of stochastic process extreme distributions 随机过程极端分布的严格单调性
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-04 DOI: 10.1016/j.spl.2024.110292
Lijian Yang
Strict monotonicity is proved for the distributions of extremes of processes consisting of series of bounded function with independent random coefficients, in particular for zero mean continuous Gaussian processes over compact metric space. These results have wide applications to global inference problems on unknown functions.
对于由具有独立随机系数的有界函数序列组成的过程的极值分布,特别是紧凑度量空间上的零均值连续高斯过程,证明了严格的单调性。这些结果广泛应用于未知函数的全局推断问题。
{"title":"Strict monotonicity of stochastic process extreme distributions","authors":"Lijian Yang","doi":"10.1016/j.spl.2024.110292","DOIUrl":"10.1016/j.spl.2024.110292","url":null,"abstract":"<div><div>Strict monotonicity is proved for the distributions of extremes of processes consisting of series of bounded function with independent random coefficients, in particular for zero mean continuous Gaussian processes over compact metric space. These results have wide applications to global inference problems on unknown functions.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110292"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter estimation and hypothesis tests in logistic model for complex correlated data 复杂相关数据逻辑模型的参数估计和假设检验
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-02 DOI: 10.1016/j.spl.2024.110294
Keyi Mou, Zhiming Li, Jinlong Cheng
Observations are frequently generated in clinical trials from correlated multiple organs (or parts) of individuals. The statistical inference is little about conducting regression analysis based on such data. This paper first develops a logistic regression for correlated multiple responses using a stable correlation binomial (SCB) model. Then, we obtain maximum likelihood estimators (MLEs) of unknown parameters through a fast quadratic lower bound (QLB) algorithm. Further, likelihood ratio, score and Wald statistics are used to test the effect of covariates based on the MLEs. Finally, the QLB algorithm and asymptotic tests are evaluated through simulations and applied to real dental data.
在临床试验中,经常会从相关的多个器官(或部位)中观察到个体的情况。基于此类数据进行回归分析的统计推断很少。本文首先利用稳定相关二项(SCB)模型开发了相关多重反应的逻辑回归。然后,我们通过快速二次下界(QLB)算法获得未知参数的最大似然估计值(MLE)。然后,根据 MLEs 使用似然比、得分和 Wald 统计量来检验协变量的影响。最后,通过模拟对 QLB 算法和渐近检验进行评估,并将其应用于真实的牙科数据。
{"title":"Parameter estimation and hypothesis tests in logistic model for complex correlated data","authors":"Keyi Mou,&nbsp;Zhiming Li,&nbsp;Jinlong Cheng","doi":"10.1016/j.spl.2024.110294","DOIUrl":"10.1016/j.spl.2024.110294","url":null,"abstract":"<div><div>Observations are frequently generated in clinical trials from correlated multiple organs (or parts) of individuals. The statistical inference is little about conducting regression analysis based on such data. This paper first develops a logistic regression for correlated multiple responses using a stable correlation binomial (SCB) model. Then, we obtain maximum likelihood estimators (MLEs) of unknown parameters through a fast quadratic lower bound (QLB) algorithm. Further, likelihood ratio, score and Wald statistics are used to test the effect of covariates based on the MLEs. Finally, the QLB algorithm and asymptotic tests are evaluated through simulations and applied to real dental data.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110294"},"PeriodicalIF":0.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics & Probability Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1