首页 > 最新文献

Statistics & Probability Letters最新文献

英文 中文
A supplement to the large deviations of infinite weighted sums of heavy tailed random variables 重尾随机变量无限加权和的大偏差补充
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-14 DOI: 10.1016/j.spl.2024.110306
Jianan Shi , Zhenhong Yu , Yu Miao
Let {X,Xn,n1} be a sequence of independent and identically distributed non-negative random variables with heavy tails and {ai(n),i1,n1} be an array of non-negative numbers. In the present paper, we study the large deviation of infinite weighted sums i=1ai(n)Xi, which is a supplement of Aurzada (2020).
设{X,Xn,n≥1}为独立且同分布的重尾非负随机变量序列,{ai(n),i≥1,n≥1}为非负数数组。本文研究无限加权和 ∑i=1∞ai(n)Xi 的大偏差,是对 Aurzada (2020) 的补充。
{"title":"A supplement to the large deviations of infinite weighted sums of heavy tailed random variables","authors":"Jianan Shi ,&nbsp;Zhenhong Yu ,&nbsp;Yu Miao","doi":"10.1016/j.spl.2024.110306","DOIUrl":"10.1016/j.spl.2024.110306","url":null,"abstract":"<div><div>Let <span><math><mrow><mo>{</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> be a sequence of independent and identically distributed non-negative random variables with heavy tails and <span><math><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>,</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> be an array of non-negative numbers. In the present paper, we study the large deviation of infinite weighted sums <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, which is a supplement of Aurzada (2020).</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110306"},"PeriodicalIF":0.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On harmonic oscillator hazard functions 关于谐振子危险函数
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-12 DOI: 10.1016/j.spl.2024.110304
J.A. Christen , F.J. Rubio
We propose a parametric hazard model obtained by enforcing positivity in the damped harmonic oscillator. The resulting model has closed-form hazard and cumulative hazard functions, facilitating likelihood and Bayesian inference on the parameters. We show that this model can capture a range of hazard shapes, such as increasing, decreasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the corresponding survival function. We illustrate the use of this model in survival analysis using real data.
我们提出了一个参数危险模型,该模型是通过在阻尼谐波振荡器中强制执行正相关性而获得的。由此产生的模型具有闭式危险和累积危险函数,便于对参数进行似然法和贝叶斯推断。我们表明,该模型可以捕捉一系列危害形状,如递增、递减、单模态、浴缸和振荡模式,并描述了相应生存函数的尾部特征。我们使用真实数据说明了该模型在生存分析中的应用。
{"title":"On harmonic oscillator hazard functions","authors":"J.A. Christen ,&nbsp;F.J. Rubio","doi":"10.1016/j.spl.2024.110304","DOIUrl":"10.1016/j.spl.2024.110304","url":null,"abstract":"<div><div>We propose a parametric hazard model obtained by enforcing positivity in the damped harmonic oscillator. The resulting model has closed-form hazard and cumulative hazard functions, facilitating likelihood and Bayesian inference on the parameters. We show that this model can capture a range of hazard shapes, such as increasing, decreasing, unimodal, bathtub, and oscillatory patterns, and characterize the tails of the corresponding survival function. We illustrate the use of this model in survival analysis using real data.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110304"},"PeriodicalIF":0.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruin probability approximation for bidimensional Brownian risk model with tax 含税二维布朗风险模型的毁灭概率近似值
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-06 DOI: 10.1016/j.spl.2024.110305
Timofei Shashkov
<div><div>Let <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span> be a two-dimensional Brownian motion with independent components and define the <span><math><mi>γ</mi></math></span>-reflected process <span><span><span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>t</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><munder><mrow><mo>inf</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>]</mo></mrow></mrow></munder><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>t</mi><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><munder><mrow><mo>inf</mo></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>]</mo></mrow></mrow></munder><mrow><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></mfenced><mo>,</mo></mrow></math></span></span></span>with given finite constants <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. The goal of this paper is to deri
设 B(t)=(B1(t),B2(t)),t≥0 为具有独立分量的二维布朗运动,并定义 γ 反射过程 X(t)=(X1(t)、X2(t))=B1(t)-c1t-γ1infs1∈[0,t](B1(s1)-c1s1),B2(t)-c2t-γ2infs2∈[0,t](B2(s2)-c2s2),给定有限常数 c1,c2∈R 和 γ1,γ2∈[0,2)。本文的目标是推导破坏概率 P∃t∈[0,T]:X1(t)>u,X2(t)>auas u→∞ 对于 T>0 的渐近线。
{"title":"Ruin probability approximation for bidimensional Brownian risk model with tax","authors":"Timofei Shashkov","doi":"10.1016/j.spl.2024.110305","DOIUrl":"10.1016/j.spl.2024.110305","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a two-dimensional Brownian motion with independent components and define the &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-reflected process &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;inf&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;with given finite constants &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The goal of this paper is to deri","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110305"},"PeriodicalIF":0.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strict monotonicity of stochastic process extreme distributions 随机过程极端分布的严格单调性
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-04 DOI: 10.1016/j.spl.2024.110292
Lijian Yang
Strict monotonicity is proved for the distributions of extremes of processes consisting of series of bounded function with independent random coefficients, in particular for zero mean continuous Gaussian processes over compact metric space. These results have wide applications to global inference problems on unknown functions.
对于由具有独立随机系数的有界函数序列组成的过程的极值分布,特别是紧凑度量空间上的零均值连续高斯过程,证明了严格的单调性。这些结果广泛应用于未知函数的全局推断问题。
{"title":"Strict monotonicity of stochastic process extreme distributions","authors":"Lijian Yang","doi":"10.1016/j.spl.2024.110292","DOIUrl":"10.1016/j.spl.2024.110292","url":null,"abstract":"<div><div>Strict monotonicity is proved for the distributions of extremes of processes consisting of series of bounded function with independent random coefficients, in particular for zero mean continuous Gaussian processes over compact metric space. These results have wide applications to global inference problems on unknown functions.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110292"},"PeriodicalIF":0.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter estimation and hypothesis tests in logistic model for complex correlated data 复杂相关数据逻辑模型的参数估计和假设检验
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-11-02 DOI: 10.1016/j.spl.2024.110294
Keyi Mou, Zhiming Li, Jinlong Cheng
Observations are frequently generated in clinical trials from correlated multiple organs (or parts) of individuals. The statistical inference is little about conducting regression analysis based on such data. This paper first develops a logistic regression for correlated multiple responses using a stable correlation binomial (SCB) model. Then, we obtain maximum likelihood estimators (MLEs) of unknown parameters through a fast quadratic lower bound (QLB) algorithm. Further, likelihood ratio, score and Wald statistics are used to test the effect of covariates based on the MLEs. Finally, the QLB algorithm and asymptotic tests are evaluated through simulations and applied to real dental data.
在临床试验中,经常会从相关的多个器官(或部位)中观察到个体的情况。基于此类数据进行回归分析的统计推断很少。本文首先利用稳定相关二项(SCB)模型开发了相关多重反应的逻辑回归。然后,我们通过快速二次下界(QLB)算法获得未知参数的最大似然估计值(MLE)。然后,根据 MLEs 使用似然比、得分和 Wald 统计量来检验协变量的影响。最后,通过模拟对 QLB 算法和渐近检验进行评估,并将其应用于真实的牙科数据。
{"title":"Parameter estimation and hypothesis tests in logistic model for complex correlated data","authors":"Keyi Mou,&nbsp;Zhiming Li,&nbsp;Jinlong Cheng","doi":"10.1016/j.spl.2024.110294","DOIUrl":"10.1016/j.spl.2024.110294","url":null,"abstract":"<div><div>Observations are frequently generated in clinical trials from correlated multiple organs (or parts) of individuals. The statistical inference is little about conducting regression analysis based on such data. This paper first develops a logistic regression for correlated multiple responses using a stable correlation binomial (SCB) model. Then, we obtain maximum likelihood estimators (MLEs) of unknown parameters through a fast quadratic lower bound (QLB) algorithm. Further, likelihood ratio, score and Wald statistics are used to test the effect of covariates based on the MLEs. Finally, the QLB algorithm and asymptotic tests are evaluated through simulations and applied to real dental data.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110294"},"PeriodicalIF":0.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal tightening of the KWW joint confidence region for a ranking 优化收紧 KWW 联合置信区的排序
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-30 DOI: 10.1016/j.spl.2024.110288
Tommy Wright
Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of uncertainty for an estimated ranking using a joint confidence region for the true ranking of K populations. In this current paper, our proposed framework permits some control over the amount of uncertainty and tightness in various portions of the estimated ranking with an optimal allocation of sample among the K populations.
Klein、Wright 和 Wieczorek(2020 年)(以下简称 KWW)利用 K 种群真实排名的联合置信区域,为估计排名构建了一个简单的新型不确定性度量。在本文中,我们提出的框架允许通过在 K 个种群中优化样本分配,对估计排名各部分的不确定性和严密性进行一定程度的控制。
{"title":"Optimal tightening of the KWW joint confidence region for a ranking","authors":"Tommy Wright","doi":"10.1016/j.spl.2024.110288","DOIUrl":"10.1016/j.spl.2024.110288","url":null,"abstract":"<div><div>Klein, Wright, and Wieczorek (2020), hereafter KWW, constructs a simple novel measure of uncertainty for an estimated ranking using a joint confidence region for the true ranking of <span><math><mi>K</mi></math></span> populations. In this current paper, our proposed framework permits some control over the amount of uncertainty and tightness in various portions of the estimated ranking with an optimal allocation of sample among the <span><math><mi>K</mi></math></span> populations.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110288"},"PeriodicalIF":0.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A one-way MANOVA test for high-dimensional data using clustering subspaces 利用聚类子空间对高维数据进行单向 MANOVA 检验
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-29 DOI: 10.1016/j.spl.2024.110293
Minyuan Lu, Bu Zhou
This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.
本研究主要关注高维单向方差分析问题,特别是在高维数据背景下检验多个群体均值向量是否相等的问题。为了解决当维度超过样本量时,经典的多元方差分析(MANOVA)检验统计量无法定义的问题,我们提出了一种利用变量聚类得到的低维子空间进行随机置换检验的方法。测试统计量来自对聚类变量的单向 MANOVA 分解,这种方法利用了变量间的相关信息,确保了较高的测试能力。模拟研究表明,所提出的检验方法在处理高维数据时表现良好。
{"title":"A one-way MANOVA test for high-dimensional data using clustering subspaces","authors":"Minyuan Lu,&nbsp;Bu Zhou","doi":"10.1016/j.spl.2024.110293","DOIUrl":"10.1016/j.spl.2024.110293","url":null,"abstract":"<div><div>This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110293"},"PeriodicalIF":0.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probability and moment inequalities for quadratic forms in independent random variables with fat tails 具有胖尾的独立随机变量中二次型的概率和矩不等式
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-28 DOI: 10.1016/j.spl.2024.110290
Chi Zhang, Danna Zhang
Probability and moment inequalities for quadratic forms are valuable tools in studying the properties of second-order statistics. There are extensive results regarding quadratic forms in random variables with finite exponential moments. However, the counterpart that allows for weaker moment conditions is inadequate. In this work, we present a new Nagaev-type tail probability inequality and a Rosenthal-type moment inequality for quadratic forms in random variables with fat tails.
二次型的概率不等式和矩不等式是研究二阶统计特性的重要工具。关于具有有限指数矩的随机变量中的二次型,已有大量结果。然而,允许较弱矩条件的对应结果并不充分。在这项研究中,我们提出了一个新的纳加耶夫型尾概率不等式和一个罗森塔尔型矩不等式,用于具有肥尾的随机变量中的二次型。
{"title":"Probability and moment inequalities for quadratic forms in independent random variables with fat tails","authors":"Chi Zhang,&nbsp;Danna Zhang","doi":"10.1016/j.spl.2024.110290","DOIUrl":"10.1016/j.spl.2024.110290","url":null,"abstract":"<div><div>Probability and moment inequalities for quadratic forms are valuable tools in studying the properties of second-order statistics. There are extensive results regarding quadratic forms in random variables with finite exponential moments. However, the counterpart that allows for weaker moment conditions is inadequate. In this work, we present a new Nagaev-type tail probability inequality and a Rosenthal-type moment inequality for quadratic forms in random variables with fat tails.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110290"},"PeriodicalIF":0.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frank copula is minimum information copula under fixed Kendall’s τ 在固定的 Kendall's τ 条件下,弗兰克协程是最小信息协程。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-26 DOI: 10.1016/j.spl.2024.110289
Issey Sukeda , Tomonari Sei
In this work, we demonstrate that the Frank copula is the minimum information copula under fixed Kendall’s τ (MICK), both theoretically and numerically. First, we explain that both MICK and the Frank density follow the hyperbolic Liouville equation. Subsequently, we show that the copula density satisfying the Liouville equation is uniquely the Frank copula. Our result asserts that selecting the Frank copula as an appropriate copula model is equivalent to using Kendall’s τ as the sole available information about the true distribution, based on the entropy maximization principle.
在这项工作中,我们从理论和数值两方面证明了弗兰克协整是固定肯德尔τ(MICK)条件下的最小信息协整。首先,我们解释了 MICK 和 Frank 密度都遵循双曲 Liouville 方程。随后,我们证明满足 Liouville 方程的 copula 密度是唯一的 Frank copula。我们的结果证明,根据熵最大化原则,选择 Frank copula 作为合适的 copula 模型等同于使用 Kendall's τ 作为关于真实分布的唯一可用信息。
{"title":"Frank copula is minimum information copula under fixed Kendall’s τ","authors":"Issey Sukeda ,&nbsp;Tomonari Sei","doi":"10.1016/j.spl.2024.110289","DOIUrl":"10.1016/j.spl.2024.110289","url":null,"abstract":"<div><div>In this work, we demonstrate that the Frank copula is the minimum information copula under fixed Kendall’s <span><math><mi>τ</mi></math></span> (MICK), both theoretically and numerically. First, we explain that both MICK and the Frank density follow the hyperbolic Liouville equation. Subsequently, we show that the copula density satisfying the Liouville equation is uniquely the Frank copula. Our result asserts that selecting the Frank copula as an appropriate copula model is equivalent to using Kendall’s <span><math><mi>τ</mi></math></span> as the sole available information about the true distribution, based on the entropy maximization principle.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110289"},"PeriodicalIF":0.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimizing the penalized goal-reaching probability with multiple dependent risks 最小化多重依赖风险下的惩罚性目标达成概率
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-10-24 DOI: 10.1016/j.spl.2024.110287
Ying Huang, Jun Peng
We consider a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who wishes to minimize the probability that the value of the wealth process reaches a low barrier before a high goal. We assume that the insurer can purchase per-loss reinsurance for every class of insurance business and invest its surplus in a risk-free asset and a risky asset. Using the technique of stochastic control theory and solving the associated Hamilton-Jacobi-Bellman (HJB) equation, we derive the robust optimal investment-reinsurance strategy and the associated value function. We conclude that the robust optimal investment-reinsurance strategy coincides with the one without model ambiguity, but the value function differs. We also illustrate our results by numerical examples.
我们考虑的是模糊厌恶型保险公司(AAI)的稳健最优投资和再保险问题,该保险公司希望最大限度地降低财富过程的价值在达到高目标之前达到低障碍的概率。我们假设保险公司可以为每一类保险业务购买按损失再保险,并将盈余投资于无风险资产和风险资产。利用随机控制理论的技术并求解相关的汉密尔顿-雅各比-贝尔曼(HJB)方程,我们得出了稳健的最优投资-再保险策略和相关的价值函数。我们的结论是,稳健的最优投资-再保险策略与没有模型模糊性的策略相吻合,但价值函数不同。我们还通过数字示例来说明我们的结果。
{"title":"Minimizing the penalized goal-reaching probability with multiple dependent risks","authors":"Ying Huang,&nbsp;Jun Peng","doi":"10.1016/j.spl.2024.110287","DOIUrl":"10.1016/j.spl.2024.110287","url":null,"abstract":"<div><div>We consider a robust optimal investment and reinsurance problem with multiple dependent risks for an Ambiguity-Averse Insurer (AAI), who wishes to minimize the probability that the value of the wealth process reaches a low barrier before a high goal. We assume that the insurer can purchase per-loss reinsurance for every class of insurance business and invest its surplus in a risk-free asset and a risky asset. Using the technique of stochastic control theory and solving the associated Hamilton-Jacobi-Bellman (HJB) equation, we derive the robust optimal investment-reinsurance strategy and the associated value function. We conclude that the robust optimal investment-reinsurance strategy coincides with the one without model ambiguity, but the value function differs. We also illustrate our results by numerical examples.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"217 ","pages":"Article 110287"},"PeriodicalIF":0.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics & Probability Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1