Population-level information for improving quantile regression efficiency

Pub Date : 2024-08-03 DOI:10.1016/j.spl.2024.110227
Yang Lv , Guoyou Qin , Zhongyi Zhu
{"title":"Population-level information for improving quantile regression efficiency","authors":"Yang Lv ,&nbsp;Guoyou Qin ,&nbsp;Zhongyi Zhu","doi":"10.1016/j.spl.2024.110227","DOIUrl":null,"url":null,"abstract":"<div><p>Observational studies often rely on sample survey data for estimation, given the difficulty of obtaining exhaustive information for the entire population. However, the use of sample data can lead to a reduction in estimation efficiency due to sampling error. When certain population-level data are accessible, devising an effective strategy to integrate them into the underlying estimation process proves advantageous. This paper proposes a methodology based on empirical likelihood for conducting quantile regression analysis on longitudinal data while incorporating population-level information. Both theoretical analysis and numerical simulations demonstrate that the proposed approach outperforms estimation methods that do not leverage population-level data.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Observational studies often rely on sample survey data for estimation, given the difficulty of obtaining exhaustive information for the entire population. However, the use of sample data can lead to a reduction in estimation efficiency due to sampling error. When certain population-level data are accessible, devising an effective strategy to integrate them into the underlying estimation process proves advantageous. This paper proposes a methodology based on empirical likelihood for conducting quantile regression analysis on longitudinal data while incorporating population-level information. Both theoretical analysis and numerical simulations demonstrate that the proposed approach outperforms estimation methods that do not leverage population-level data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
提高量化回归效率的人口信息
由于难以获得全部人口的详尽信息,观察研究通常依赖抽样调查数据进行估算。然而,由于抽样误差,使用样本数据可能会降低估算效率。当可以获得某些人口层面的数据时,设计一种有效的策略将其纳入基本估算过程就证明是有利的。本文提出了一种基于经验似然法的方法,用于对纵向数据进行量化回归分析,同时纳入人口水平信息。理论分析和数值模拟均证明,所提出的方法优于未利用人口水平数据的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1