Muzzle bubble dynamics characterization of underwater launching

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-08-07 DOI:10.1063/5.0222463
Zhiqun Sun, Qiang Li, Xuewei Zhang, Pu Qu, Lin Lu
{"title":"Muzzle bubble dynamics characterization of underwater launching","authors":"Zhiqun Sun, Qiang Li, Xuewei Zhang, Pu Qu, Lin Lu","doi":"10.1063/5.0222463","DOIUrl":null,"url":null,"abstract":"To comprehensively understand the dynamic behavior of muzzle bubbles during underwater launching, an emptying process aligned with the muzzle flow characteristics is established and an evaporative condensation mechanism is modeled according to the high temperature and pressure properties of the propellant gas. Utilizing the spherical bubble theory, which comprises the inflation process and evaporative condensation effects, the dynamics of muzzle bubbles and their corresponding pressure waves are investigated. The numerical simulation results well agree with the experimental observations in terms of bubble radius and near-field pressure waves. Furthermore, the influence of two key factors on the bubble dynamics is examined: underwater launching depth and initial muzzle pressures. The results illustrate that the inflation process needs to be accurately described for precise pressure wave predictions. Using the evaporation condensation model, the bubble radius and frequency can be accurately characterized. Moreover, the launching depth influences the free expansion radius and oscillation frequency mostly due to the increase in hydrostatic pressure, which decreases by 33% and increases by 150% in the 1–20 m range, respectively. The initial muzzle pressure affects the initial expansion velocity and initial shock wave mainly due to the increase in the mass flow rate, which increase by 56% and 82% in the 35–65 MPa range, respectively.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222463","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

To comprehensively understand the dynamic behavior of muzzle bubbles during underwater launching, an emptying process aligned with the muzzle flow characteristics is established and an evaporative condensation mechanism is modeled according to the high temperature and pressure properties of the propellant gas. Utilizing the spherical bubble theory, which comprises the inflation process and evaporative condensation effects, the dynamics of muzzle bubbles and their corresponding pressure waves are investigated. The numerical simulation results well agree with the experimental observations in terms of bubble radius and near-field pressure waves. Furthermore, the influence of two key factors on the bubble dynamics is examined: underwater launching depth and initial muzzle pressures. The results illustrate that the inflation process needs to be accurately described for precise pressure wave predictions. Using the evaporation condensation model, the bubble radius and frequency can be accurately characterized. Moreover, the launching depth influences the free expansion radius and oscillation frequency mostly due to the increase in hydrostatic pressure, which decreases by 33% and increases by 150% in the 1–20 m range, respectively. The initial muzzle pressure affects the initial expansion velocity and initial shock wave mainly due to the increase in the mass flow rate, which increase by 56% and 82% in the 35–65 MPa range, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下发射的炮口气泡动力学特性分析
为全面了解水下发射过程中枪口气泡的动态行为,根据推进剂气体的高温高压特性,建立了与枪口流特性相一致的排空过程和蒸发冷凝机制模型。利用包含膨胀过程和蒸发冷凝效应的球形气泡理论,研究了枪口气泡及其相应压力波的动力学特性。在气泡半径和近场压力波方面,数值模拟结果与实验观测结果十分吻合。此外,还研究了两个关键因素对气泡动力学的影响:水下发射深度和初始枪口压力。结果表明,要精确预测压力波,必须准确描述充气过程。利用蒸发冷凝模型,可以准确描述气泡半径和频率。此外,发射深度对自由膨胀半径和振荡频率的影响主要是由于静水压力的增加,在 1-20 米范围内,自由膨胀半径和振荡频率分别减少了 33%和增加了 150%。初始炮口压力对初始膨胀速度和初始冲击波的影响主要是由于质量流量的增加,在 35-65 兆帕范围内分别增加了 56% 和 82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
Meso-scale investigation on the permeability of frozen soils with the lattice Boltzmann method Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle Directional self-migration of droplets on an inclined surface driven by wettability gradient Overlapping effect of detonation driving during multi-point initiation Effect of loading rate on characteristics of cyclic structural adjustment of sandstone granules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1