Cell viability assessment and physicomechanical characterization of Juglans regia leaf fiber-reinforced poly(hydroxybutyrate) films for biomedical uses
{"title":"Cell viability assessment and physicomechanical characterization of Juglans regia leaf fiber-reinforced poly(hydroxybutyrate) films for biomedical uses","authors":"Simran Ahuja, Neha Bansal, Mahak Mittal, Kapil Gulati, Ashwani Mittal, Sanjiv Arora","doi":"10.1007/s13726-024-01367-w","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to explore the cytotoxicity, physicomechanical, thermal, and barrier properties of <i>Juglans regia</i> leaf fiber (J) reinforced PHB-based films, with a focus on evaluating their suitability for biomedical applications. In this work, scaffolds are developed by incorporating varying concentrations (0.5%, 1%, 1.5%, 2% and 2.5%) of J into poly(hydroxybutyrate)/poly(vinylacetate) matrix by solvent casting. These are characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results indicated that the sample containing 1.0% (by weight) J (PJ1.0) results in maximum values of the tensile strength (25 MPa) and storage modulus (1.61 GPa) at – 20 °C. Moreover, this sample exhibited favorable thermal, water barrier, and wettability properties. The hydrolytic degradation behavior of the composites is also studied at pH 7.4 and 37 °C for 16 weeks. It is observed that PJ1.0 degrades by 45%, whereas PHB experiences 18% degradation. Furthermore, the cytotoxic nature of the scaffolds is also assessed using C2C12 mouse skeletal muscle cell lines. The results confirmed that PJ1.0 does not show any cytotoxic effects when compared to pure PHB. Thus, findings of this study suggested the potential of <i>Juglans regia</i> fiber for the development of sustainable and mechanically robust materials for biomedical applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"93 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01367-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to explore the cytotoxicity, physicomechanical, thermal, and barrier properties of Juglans regia leaf fiber (J) reinforced PHB-based films, with a focus on evaluating their suitability for biomedical applications. In this work, scaffolds are developed by incorporating varying concentrations (0.5%, 1%, 1.5%, 2% and 2.5%) of J into poly(hydroxybutyrate)/poly(vinylacetate) matrix by solvent casting. These are characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results indicated that the sample containing 1.0% (by weight) J (PJ1.0) results in maximum values of the tensile strength (25 MPa) and storage modulus (1.61 GPa) at – 20 °C. Moreover, this sample exhibited favorable thermal, water barrier, and wettability properties. The hydrolytic degradation behavior of the composites is also studied at pH 7.4 and 37 °C for 16 weeks. It is observed that PJ1.0 degrades by 45%, whereas PHB experiences 18% degradation. Furthermore, the cytotoxic nature of the scaffolds is also assessed using C2C12 mouse skeletal muscle cell lines. The results confirmed that PJ1.0 does not show any cytotoxic effects when compared to pure PHB. Thus, findings of this study suggested the potential of Juglans regia fiber for the development of sustainable and mechanically robust materials for biomedical applications.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.