{"title":"Polycarbonate ultrafiltration membrane modified with Mg–Al-layered double hydroxide nanoparticles for treatment of petroleum refinery wastewater","authors":"Masoumeh Zaremanesh, Habib Etemadi, Erfan Shafaati, Ghader Hosseinzadeh, Alireza Yousefi","doi":"10.1007/s13726-024-01364-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, to improve the antifouling and separation performance of polycarbonate (PC) membranes in the petroleum refinery wastewater treatment, various amounts of magnesium–aluminum (Mg–Al)-layered double hydroxide (LDH) nanoparticles (0–2 wt%) were incorporated into PC membrane, for the first time. The Fourier transform infrared (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) characterizations confirmed the synthesis of Mg–Al LDH structure through the hydrothermal method, with different counter anions including nitrate (NO<sub>3</sub><sup>−</sup>) and carbonate (CO<sub>3</sub><sup>2−</sup>) presented in the interlayer spaces. The characteristics of the fabricated membranes were investigated using water contact angle and porosity analyses, FESEM and atomic force microscopy (AFM) techniques and mechanical properties. All membranes modified with Mg–Al LDH hydrophilic nanoparticles showed a lower water contact angle and higher porosity as compared to the neat PC membrane. The FESEM micrographs of the cross section of the membrane indicated that the inclusion of CO<sub>3</sub>.Mg–Al LDH nanoparticles in the PC matrix led to the removal of the sponge-like layer of the membrane. The results of the petroleum refinery wastewater filtration experiment revealed that the irreversible fouling ratio (IFR) value decreased from 66.7% for the neat PC membrane to 10.5% and 19.1% for PC/CO<sub>3</sub> Mg–Al LDH-1.5 and PC/NO<sub>3</sub> Mg–Al LDH-1.5 nanocomposite membranes, respectively. The membrane separation performance, measured by the total organic carbon (TOC) indicated that filtrates from all nanocomposite membranes had lower TOC values compared to the neat PC membrane.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13726-024-01364-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, to improve the antifouling and separation performance of polycarbonate (PC) membranes in the petroleum refinery wastewater treatment, various amounts of magnesium–aluminum (Mg–Al)-layered double hydroxide (LDH) nanoparticles (0–2 wt%) were incorporated into PC membrane, for the first time. The Fourier transform infrared (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) characterizations confirmed the synthesis of Mg–Al LDH structure through the hydrothermal method, with different counter anions including nitrate (NO3−) and carbonate (CO32−) presented in the interlayer spaces. The characteristics of the fabricated membranes were investigated using water contact angle and porosity analyses, FESEM and atomic force microscopy (AFM) techniques and mechanical properties. All membranes modified with Mg–Al LDH hydrophilic nanoparticles showed a lower water contact angle and higher porosity as compared to the neat PC membrane. The FESEM micrographs of the cross section of the membrane indicated that the inclusion of CO3.Mg–Al LDH nanoparticles in the PC matrix led to the removal of the sponge-like layer of the membrane. The results of the petroleum refinery wastewater filtration experiment revealed that the irreversible fouling ratio (IFR) value decreased from 66.7% for the neat PC membrane to 10.5% and 19.1% for PC/CO3 Mg–Al LDH-1.5 and PC/NO3 Mg–Al LDH-1.5 nanocomposite membranes, respectively. The membrane separation performance, measured by the total organic carbon (TOC) indicated that filtrates from all nanocomposite membranes had lower TOC values compared to the neat PC membrane.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.