Naoyoshi Kumakura, Takayuki Motoyama, Keisuke Miyazawa, Toshihiko Nogawa, Katsuma Yonehara, Kaori Sakai, Nobuaki Ishihama, Kaisei Matsumori, Pamela Gan, Hiroyuki Koshino, Takeshi Fukuma, Richard J. O'Connell, Ken Shirasu
{"title":"Dihydroxyhexanoic acid biosynthesis controls turgor in pathogenic fungi","authors":"Naoyoshi Kumakura, Takayuki Motoyama, Keisuke Miyazawa, Toshihiko Nogawa, Katsuma Yonehara, Kaori Sakai, Nobuaki Ishihama, Kaisei Matsumori, Pamela Gan, Hiroyuki Koshino, Takeshi Fukuma, Richard J. O'Connell, Ken Shirasu","doi":"10.1101/2024.08.07.606736","DOIUrl":null,"url":null,"abstract":"Many plant pathogenic fungi penetrate host surfaces mechanically, using turgor pressure generated by appressoria, specialized infection cells. These appressoria develop semipermeable cell walls and accumulate osmolytes internally to create turgor by osmosis. While melanin is known to be important for turgor generation, the mechanism for wall semipermeability has remained unclear. Here we identify <em>PKS2 and PBG13</em>, by reverse genetics, as crucial for forming the semipermeable barrier in anthracnose and rice blast fungi. These genes encode enzymes that synthesize 3,5-dihydroxyhexanoic acid polymers essential for the cell wall properties. Deleting these enzymes impairs cell wall porosity, abolishing turgor and pathogenicity without affecting melanization. Our findings uncover a novel mechanism of turgor generation, linking enzyme function to pathogen penetration and disease potential, presenting new targets for disease control.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.606736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many plant pathogenic fungi penetrate host surfaces mechanically, using turgor pressure generated by appressoria, specialized infection cells. These appressoria develop semipermeable cell walls and accumulate osmolytes internally to create turgor by osmosis. While melanin is known to be important for turgor generation, the mechanism for wall semipermeability has remained unclear. Here we identify PKS2 and PBG13, by reverse genetics, as crucial for forming the semipermeable barrier in anthracnose and rice blast fungi. These genes encode enzymes that synthesize 3,5-dihydroxyhexanoic acid polymers essential for the cell wall properties. Deleting these enzymes impairs cell wall porosity, abolishing turgor and pathogenicity without affecting melanization. Our findings uncover a novel mechanism of turgor generation, linking enzyme function to pathogen penetration and disease potential, presenting new targets for disease control.