Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis

An Yu, Xiaohong Chen, Wenkai Xi, Xia Zhao, Yazhu Wang, Zhihong Gong, Xiaofeng Zhou
{"title":"Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis","authors":"An Yu, Xiaohong Chen, Wenkai Xi, Xia Zhao, Yazhu Wang, Zhihong Gong, Xiaofeng Zhou","doi":"10.1101/2024.09.18.613657","DOIUrl":null,"url":null,"abstract":"Cystopteris chinensis is an endangered fern endemic to China, which only has a small wild population due to its poor reproductive ability. However, we recently found that it can produce bulbils on its pinnule to generate new plants but the molecular mechanism underlying this unique phenomenon remained unknown. In this study, we have identified four distinct stages in the initiation and development of bulbils based on morphological and anatomical observation. We performed transcriptome and metabolome analyses on the collected samples at each stage. Through KEGG enrichment analysis, it was found that the phytohormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways play a significant role in regulating bulbil initiation and development. Specifically, the involvement of three phytohormones and sugar substances was identified in the process of bulbil initiation. Our study provides the first detailed observation of the bulbils in C. chinensis and explains their initiation and development at the molecular level. However, more in-depth studies are needed to discover the functions of key genes controlling the formation of bulbils to conserve the endangered C. chinensis population.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cystopteris chinensis is an endangered fern endemic to China, which only has a small wild population due to its poor reproductive ability. However, we recently found that it can produce bulbils on its pinnule to generate new plants but the molecular mechanism underlying this unique phenomenon remained unknown. In this study, we have identified four distinct stages in the initiation and development of bulbils based on morphological and anatomical observation. We performed transcriptome and metabolome analyses on the collected samples at each stage. Through KEGG enrichment analysis, it was found that the phytohormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways play a significant role in regulating bulbil initiation and development. Specifically, the involvement of three phytohormones and sugar substances was identified in the process of bulbil initiation. Our study provides the first detailed observation of the bulbils in C. chinensis and explains their initiation and development at the molecular level. However, more in-depth studies are needed to discover the functions of key genes controlling the formation of bulbils to conserve the endangered C. chinensis population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组和代谢组的综合分析揭示了鞘翅目蝉科昆虫鳞茎萌发和发育的调控机制
鞘翅蕨(Cystopteris chinensis)是中国特有的濒危蕨类植物,由于繁殖能力差,野生种群数量很少。然而,我们最近发现它能在其小羽片上产生珠芽以生成新植株,但这一独特现象的分子机制仍然未知。在本研究中,我们根据形态学和解剖学观察,确定了球茎开始和发育的四个不同阶段。我们对每个阶段采集的样本进行了转录组和代谢组分析。通过 KEGG 富集分析,我们发现植物激素信号转导、淀粉和蔗糖代谢、苯丙类生物合成和黄酮类生物合成途径在调控球茎萌发和发育过程中发挥了重要作用。具体来说,我们发现了三种植物激素和糖类物质参与了球茎的萌发过程。我们的研究首次详细观察了中柱栗的球茎,并从分子水平解释了球茎的萌发和发育过程。然而,还需要更深入的研究来发现控制珠芽形成的关键基因的功能,以保护濒危的五倍子种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis Directional Cell-to-cell Transport in Plant Roots Bundle sheath cell-dependent chloroplast movement in mesophyll cells of C4 plants analyzed using live leaf-section imaging Stigma longevity is not a major limiting factor in hybrid wheat seed production Genotype by environment interactions in gene regulation underlie the response to soil drying in the model grass Brachypodium distachyon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1