Deep joint source-channel coding for wireless point cloud transmission

Cixiao Zhang, Mufan Liu, Wenjie Huang, Yin Xu, Yiling Xu, Dazhi He
{"title":"Deep joint source-channel coding for wireless point cloud transmission","authors":"Cixiao Zhang, Mufan Liu, Wenjie Huang, Yin Xu, Yiling Xu, Dazhi He","doi":"arxiv-2408.04889","DOIUrl":null,"url":null,"abstract":"The growing demand for high-quality point cloud transmission over wireless\nnetworks presents significant challenges, primarily due to the large data sizes\nand the need for efficient encoding techniques. In response to these\nchallenges, we introduce a novel system named Deep Point Cloud Semantic\nTransmission (PCST), designed for end-to-end wireless point cloud transmission.\nOur approach employs a progressive resampling framework using sparse\nconvolution to project point cloud data into a semantic latent space. These\nsemantic features are subsequently encoded through a deep joint source-channel\n(JSCC) encoder, generating the channel-input sequence. To enhance transmission\nefficiency, we use an adaptive entropy-based approach to assess the importance\nof each semantic feature, allowing transmission lengths to vary according to\ntheir predicted entropy. PCST is robust across diverse Signal-to-Noise Ratio\n(SNR) levels and supports an adjustable rate-distortion (RD) trade-off,\nensuring flexible and efficient transmission. Experimental results indicate\nthat PCST significantly outperforms traditional separate source-channel coding\n(SSCC) schemes, delivering superior reconstruction quality while achieving over\na 50% reduction in bandwidth usage.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for high-quality point cloud transmission over wireless networks presents significant challenges, primarily due to the large data sizes and the need for efficient encoding techniques. In response to these challenges, we introduce a novel system named Deep Point Cloud Semantic Transmission (PCST), designed for end-to-end wireless point cloud transmission. Our approach employs a progressive resampling framework using sparse convolution to project point cloud data into a semantic latent space. These semantic features are subsequently encoded through a deep joint source-channel (JSCC) encoder, generating the channel-input sequence. To enhance transmission efficiency, we use an adaptive entropy-based approach to assess the importance of each semantic feature, allowing transmission lengths to vary according to their predicted entropy. PCST is robust across diverse Signal-to-Noise Ratio (SNR) levels and supports an adjustable rate-distortion (RD) trade-off, ensuring flexible and efficient transmission. Experimental results indicate that PCST significantly outperforms traditional separate source-channel coding (SSCC) schemes, delivering superior reconstruction quality while achieving over a 50% reduction in bandwidth usage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无线点云传输的深度联合源信道编码
通过无线网络传输高质量点云的需求日益增长,这带来了巨大的挑战,主要是因为数据量大,需要高效的编码技术。为了应对这些挑战,我们推出了一种名为 "深度点云语义传输(PCST)"的新型系统,专为端到端无线点云传输而设计。语义特征随后通过深度联合源-信道(JSCC)编码器进行编码,生成信道-输入序列。为了提高传输效率,我们使用基于熵的自适应方法来评估每个语义特征的重要性,允许传输长度根据其预测熵而变化。PCST 在不同的信噪比(SNR)水平下都很稳健,并支持可调节的速率-失真(RD)权衡,从而确保了灵活高效的传输。实验结果表明,PCST 的性能明显优于传统的独立源信道编码(SSCC)方案,在提供卓越的重构质量的同时,还能减少 50% 以上的带宽使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1