Sustainable Semiconductor Manufacturing: The Role of Lithography

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-06-19 DOI:10.1109/TSM.2024.3416830
Emily Gallagher;Lars-Åke Ragnarsson;Cedric Rolin
{"title":"Sustainable Semiconductor Manufacturing: The Role of Lithography","authors":"Emily Gallagher;Lars-Åke Ragnarsson;Cedric Rolin","doi":"10.1109/TSM.2024.3416830","DOIUrl":null,"url":null,"abstract":"Sustainability and semiconductor manufacturing are linked in ways that may not be visible to experts in either area; this opacity is slowly fading with the surge of corporate commitments toward net-zero carbon emissions by 2050. In 2023, imec released a model (imec.netzero) to quantify the environmental impact of manufacturing integrated circuits (ICs). In this paper, the emissions trends are used to create an understanding of the processes that contribute. Lithography - both 193nm (DUV) and 13.5 nm (EUV) - has a large role to play in changing the overall emissions of IC chip manufacturing. Methods for reducing the emissions associated with lithography include design and process choices that maximize throughput and tool operational choices to reduce consumption. Low-emissions behaviors in manufacturing can be promoted once their potential benefit has been quantified. Engineers are well-accustomed to optimizing for performance; we must now optimize for lower emissions in parallel.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"440-444"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10564116/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainability and semiconductor manufacturing are linked in ways that may not be visible to experts in either area; this opacity is slowly fading with the surge of corporate commitments toward net-zero carbon emissions by 2050. In 2023, imec released a model (imec.netzero) to quantify the environmental impact of manufacturing integrated circuits (ICs). In this paper, the emissions trends are used to create an understanding of the processes that contribute. Lithography - both 193nm (DUV) and 13.5 nm (EUV) - has a large role to play in changing the overall emissions of IC chip manufacturing. Methods for reducing the emissions associated with lithography include design and process choices that maximize throughput and tool operational choices to reduce consumption. Low-emissions behaviors in manufacturing can be promoted once their potential benefit has been quantified. Engineers are well-accustomed to optimizing for performance; we must now optimize for lower emissions in parallel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可持续半导体制造:光刻技术的作用
可持续发展与半导体制造之间的联系,对于这两个领域的专家来说可能都不明显;但随着企业纷纷承诺到 2050 年实现碳净零排放,这种不明显的联系正在慢慢消失。2023 年,imec 发布了一个模型(imec.netzero),用于量化集成电路(IC)制造对环境的影响。在本文中,我们将利用排放趋势来了解造成影响的工艺。光刻技术--193 纳米(DUV)和 13.5 纳米(EUV)--在改变集成电路芯片制造的总体排放量方面发挥着重要作用。减少与光刻技术相关的排放的方法包括最大限度提高产量的设计和工艺选择,以及减少消耗的工具操作选择。制造过程中的低排放行为一旦被量化,其潜在效益就会得到推广。工程师们习惯于优化性能,现在我们必须同时优化降低排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Front Cover Editorial Table of Contents IEEE Transactions on Semiconductor Manufacturing Publication Information Guest Editorial Special Section on Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1