A Study on the Improvement of Safety and Efficiency of Clean Rooms in Semiconductor Factories Through Real Fire Experiments

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-06-10 DOI:10.1109/TSM.2024.3411662
Sanghyuk Hong;Hasung Kong
{"title":"A Study on the Improvement of Safety and Efficiency of Clean Rooms in Semiconductor Factories Through Real Fire Experiments","authors":"Sanghyuk Hong;Hasung Kong","doi":"10.1109/TSM.2024.3411662","DOIUrl":null,"url":null,"abstract":"The increasing number of fires in semiconductor factories requires new approaches to fire safety. It is important to study the specifics of the activities of companies that use potentially flammable materials in production, such as air filtration units, electrical cables and floor panels. The aim of the study was therefore to determine the level of fire risk in the clean rooms of these companies by means of real fire experiments. As a result, a fire risk assessment of the main combustible materials such as air filtration units, electrical cables and floor panels in the plenum room on the top floor of the cleanroom was carried out. The results of the experiment showed a low ignition propensity of the air filtration unit and limited fire propagation in the event of ignition. High calorific materials, such as fibreglass in filters, were identified as increasing the risk. Based on this, it was proposed to replace these materials with flame retardant materials and to improve the stop/fire control systems of the air filtration units. The results obtained in the study should be used for the development of technical recommendations for improving fire safety in critical premises at semiconductor factories.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"394-401"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10552394/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing number of fires in semiconductor factories requires new approaches to fire safety. It is important to study the specifics of the activities of companies that use potentially flammable materials in production, such as air filtration units, electrical cables and floor panels. The aim of the study was therefore to determine the level of fire risk in the clean rooms of these companies by means of real fire experiments. As a result, a fire risk assessment of the main combustible materials such as air filtration units, electrical cables and floor panels in the plenum room on the top floor of the cleanroom was carried out. The results of the experiment showed a low ignition propensity of the air filtration unit and limited fire propagation in the event of ignition. High calorific materials, such as fibreglass in filters, were identified as increasing the risk. Based on this, it was proposed to replace these materials with flame retardant materials and to improve the stop/fire control systems of the air filtration units. The results obtained in the study should be used for the development of technical recommendations for improving fire safety in critical premises at semiconductor factories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过真实火灾实验提高半导体工厂洁净室安全性和效率的研究
随着半导体工厂火灾数量的不断增加,需要采取新的消防安全方法。研究在生产中使用潜在易燃材料(如空气过滤装置、电缆和地板)的企业的具体活动非常重要。因此,研究的目的是通过真实的火灾实验来确定这些公司无尘室的火灾风险水平。因此,我们对无尘室顶层通风室中的空气过滤装置、电缆和地板等主要可燃材料进行了火灾风险评估。实验结果表明,空气过滤装置的着火倾向较低,着火时火势蔓延有限。高热量材料(如过滤器中的玻璃纤维)被认为会增加风险。在此基础上,建议用阻燃材料取代这些材料,并改进空气过滤装置的阻燃/防火控制系统。研究结果应用于制定技术建议,以改善半导体工厂关键场所的消防安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Overlay Measurement Algorithm for Moirè Targets Using Frequency Analysis Performance Evaluation of Supervised Learning Model Based on Functional Data Analysis and Summary Statistics Machine Learning Based Universal Threshold Voltage Extraction of Transistors Using Convolutional Neural Networks A Novel Multi-Modal Learning Approach for Cross-Process Defect Classification in TFT-LCD Array Manufacturing Feature Extraction From Diffraction Images Using a Spatial Light Modulator in Scatterometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1