Youcheng Wang;Zhuo Chen;Cong Wang;Nick Keller;G. Andrew Antonelli;Zhuan Liu;Troy Ribaudo;Rostislav Grynko
{"title":"3-D NAND Oxide/Nitride Tier Stack Thickness and Zonal Measurements With Infrared Metrology","authors":"Youcheng Wang;Zhuo Chen;Cong Wang;Nick Keller;G. Andrew Antonelli;Zhuan Liu;Troy Ribaudo;Rostislav Grynko","doi":"10.1109/TSM.2024.3404475","DOIUrl":null,"url":null,"abstract":"Three dimensional Not-And (3D NAND) flash memory devices are scaling in the vertical direction to more than 200 oxide/sacrificial wordline nitride layers to further increase storage capacity and enhance energy efficiency. The accurate measurement of the thicknesses of these layers is critical to controlling stress-induced wafer warping and pattern distortion. While traditional optical metrology in the UV-vis-NIR range offers a non-destructive inline solution for high volume manufacturing, we demonstrate in this paper, that mid-IR metrology has advantages in de-correlating oxide and nitride thicknesses owing to their unique absorption signatures. Furthermore, because of the depths sensitivity of oxide and nitride absorptions, the simulated measurement results show the ability to differentiate thickness variations in the vertical zones. Good blind test results were obtained with a machine learning model trained on pseudo-references and pseudo spectra with added skew.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"244-250"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10547102/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Three dimensional Not-And (3D NAND) flash memory devices are scaling in the vertical direction to more than 200 oxide/sacrificial wordline nitride layers to further increase storage capacity and enhance energy efficiency. The accurate measurement of the thicknesses of these layers is critical to controlling stress-induced wafer warping and pattern distortion. While traditional optical metrology in the UV-vis-NIR range offers a non-destructive inline solution for high volume manufacturing, we demonstrate in this paper, that mid-IR metrology has advantages in de-correlating oxide and nitride thicknesses owing to their unique absorption signatures. Furthermore, because of the depths sensitivity of oxide and nitride absorptions, the simulated measurement results show the ability to differentiate thickness variations in the vertical zones. Good blind test results were obtained with a machine learning model trained on pseudo-references and pseudo spectra with added skew.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.