Lev Denisov, Andrea Galimberti, Daniele Cattaneo, Giovanni Agosta, Davide Zoni
{"title":"Design-time methodology for optimizing mixed-precision CPU architectures on FPGA","authors":"Lev Denisov, Andrea Galimberti, Daniele Cattaneo, Giovanni Agosta, Davide Zoni","doi":"10.1016/j.sysarc.2024.103257","DOIUrl":null,"url":null,"abstract":"<div><p>Approximate computing can significantly reduce the energy consumption of computing systems. Mixed-precision hardware architectures and precision-tuning tools for software provide the ability to introduce approximations, but when applied separately, they do not give complete control over the accuracy-energy trade-off. The co-optimization of approximations in hardware and software is a complex task, but it promises considerable benefits. We present a methodology for the fast design-time selection of mixed-precision hardware-software combinations that minimize the energy consumption and the area of the target FPGA-based softcore CPUs with configurable support for floating-point and fixed-point arithmetic. Our approach can evaluate configurations more than 2000 times faster than the alternative approach of using gate-level simulation. On benchmarks from the PolyBench suite the identified hardware-software configurations showed improvement of the energy-to-solution metric ranging from 20% to 95%.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"155 ","pages":"Article 103257"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383762124001942/pdfft?md5=55022e3533486fbfd6ddfb763e97f61b&pid=1-s2.0-S1383762124001942-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001942","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Approximate computing can significantly reduce the energy consumption of computing systems. Mixed-precision hardware architectures and precision-tuning tools for software provide the ability to introduce approximations, but when applied separately, they do not give complete control over the accuracy-energy trade-off. The co-optimization of approximations in hardware and software is a complex task, but it promises considerable benefits. We present a methodology for the fast design-time selection of mixed-precision hardware-software combinations that minimize the energy consumption and the area of the target FPGA-based softcore CPUs with configurable support for floating-point and fixed-point arithmetic. Our approach can evaluate configurations more than 2000 times faster than the alternative approach of using gate-level simulation. On benchmarks from the PolyBench suite the identified hardware-software configurations showed improvement of the energy-to-solution metric ranging from 20% to 95%.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.