{"title":"Stress wave effects and their mechanisms on stress-strain curves in the elastic phase of SHPB tests","authors":"","doi":"10.1016/j.ijimpeng.2024.105061","DOIUrl":null,"url":null,"abstract":"<div><p>In Split Hopkinson Pressure Bar (SHPB) tests, the stress wave effects during the elastic phase of the stress-strain curve and their influence mechanisms are crucial. Due to the extremely short duration of the elastic deformation phase, the stress wave effects on the specimen during this stage cannot be ignored. This leads to significant errors in the obtained elastic stress-strain curves. However, the dynamic compressive elastic stress-strain relationship forms the basis for studying the viscoelastic behavior of materials. Accurate determination of elastic yield stress and yield strain is also essential for deriving accurate plastic stress-strain relationships. Quantitative research on the stress wave effects during the elastic compression phase of SHPB tests is fundamental for decoupling and obtaining accurate material elastic curves. This paper conducts a quantitative theoretical analysis of the structural effects caused by stress wave evolution during the elastic compression phase, based on the assumption of plane waves. It studies the deviation characteristics and main factors of the phenomenological engineering stress-strain curves of the specimen compared to the actual material stress-strain curves under different conditions, revealing the influence rules and mechanisms of this deviation. The maximum stress deviation value and its corresponding dimensionless time, as well as the variation trend of the maximum stress deviation value within different fluctuation intervals, are calculated. Additionally, the study investigates the cases where the incident wave is arc-shaped or a combination of arc and linear waves. The findings provide theoretical references for the precise design and accurate data processing of SHPB tests.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24001854","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In Split Hopkinson Pressure Bar (SHPB) tests, the stress wave effects during the elastic phase of the stress-strain curve and their influence mechanisms are crucial. Due to the extremely short duration of the elastic deformation phase, the stress wave effects on the specimen during this stage cannot be ignored. This leads to significant errors in the obtained elastic stress-strain curves. However, the dynamic compressive elastic stress-strain relationship forms the basis for studying the viscoelastic behavior of materials. Accurate determination of elastic yield stress and yield strain is also essential for deriving accurate plastic stress-strain relationships. Quantitative research on the stress wave effects during the elastic compression phase of SHPB tests is fundamental for decoupling and obtaining accurate material elastic curves. This paper conducts a quantitative theoretical analysis of the structural effects caused by stress wave evolution during the elastic compression phase, based on the assumption of plane waves. It studies the deviation characteristics and main factors of the phenomenological engineering stress-strain curves of the specimen compared to the actual material stress-strain curves under different conditions, revealing the influence rules and mechanisms of this deviation. The maximum stress deviation value and its corresponding dimensionless time, as well as the variation trend of the maximum stress deviation value within different fluctuation intervals, are calculated. Additionally, the study investigates the cases where the incident wave is arc-shaped or a combination of arc and linear waves. The findings provide theoretical references for the precise design and accurate data processing of SHPB tests.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications