Method to determine the optimal impedance profile of nonuniform transmission lines used for pulsed power accelerators

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Physical Review Accelerators and Beams Pub Date : 2024-08-05 DOI:10.1103/physrevaccelbeams.27.080401
Quan Zhou, Xinlei Zhu, Yaping Du
{"title":"Method to determine the optimal impedance profile of nonuniform transmission lines used for pulsed power accelerators","authors":"Quan Zhou, Xinlei Zhu, Yaping Du","doi":"10.1103/physrevaccelbeams.27.080401","DOIUrl":null,"url":null,"abstract":"Nonuniform transmission lines (NTLs) are widely used in pulsed power accelerators because they provide an efficient way to achieve impedance matching and pulse shaping. Since designing and constructing these accelerators typically demands substantial effort, finding the optimal impedance profile to maximize the power transmission efficiencies of the NTLs is important. In this paper, a convenient numerical method to determine the optimal impedance profile is proposed. First, the output of the NTL with arbitrary parameters is theoretically analyzed under arbitrary input conditions. It was found that only four factors affect the power transmission efficiency: the ratio of output impedance to input impedance, the ratio of input pulse width to the NTL’s one-way transit time, the normalized impedance profile, and the normalized input pulse. Based on these findings, a method designed to minimize the reflected component within the working frequency range is proposed. Using this method, an impedance profile demonstrating superior power transmission efficiency compared to the traditional exponential profile is identified. This work can provide a rapid and effective method to determine the impedance profile of the NTL, undoubtedly benefiting the design process of pulsed power accelerators.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"58 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.080401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Nonuniform transmission lines (NTLs) are widely used in pulsed power accelerators because they provide an efficient way to achieve impedance matching and pulse shaping. Since designing and constructing these accelerators typically demands substantial effort, finding the optimal impedance profile to maximize the power transmission efficiencies of the NTLs is important. In this paper, a convenient numerical method to determine the optimal impedance profile is proposed. First, the output of the NTL with arbitrary parameters is theoretically analyzed under arbitrary input conditions. It was found that only four factors affect the power transmission efficiency: the ratio of output impedance to input impedance, the ratio of input pulse width to the NTL’s one-way transit time, the normalized impedance profile, and the normalized input pulse. Based on these findings, a method designed to minimize the reflected component within the working frequency range is proposed. Using this method, an impedance profile demonstrating superior power transmission efficiency compared to the traditional exponential profile is identified. This work can provide a rapid and effective method to determine the impedance profile of the NTL, undoubtedly benefiting the design process of pulsed power accelerators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定用于脉冲功率加速器的非均匀传输线最佳阻抗曲线的方法
非均匀传输线(NTL)可有效实现阻抗匹配和脉冲整形,因此被广泛应用于脉冲功率加速器中。由于设计和建造这些加速器通常需要耗费大量精力,因此找到最佳阻抗曲线以最大化 NTL 的功率传输效率非常重要。本文提出了一种方便的数值方法来确定最佳阻抗曲线。首先,从理论上分析了在任意输入条件下具有任意参数的 NTL 的输出。结果发现,只有四个因素会影响功率传输效率:输出阻抗与输入阻抗之比、输入脉冲宽度与 NTL 单向传输时间之比、归一化阻抗曲线和归一化输入脉冲。基于这些发现,我们提出了一种在工作频率范围内尽量减少反射分量的方法。与传统的指数型阻抗曲线相比,使用这种方法可以确定一种具有更高功率传输效率的阻抗曲线。这项研究提供了一种快速有效的方法来确定 NTL 的阻抗轮廓,无疑有利于脉冲功率加速器的设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
期刊最新文献
Efficient algorithms for dynamic aperture and momentum acceptance calculation in synchrotron light sources Dual-energy electron storage ring Calculations of space-charge tune shifts in storage rings with extremely short bunches and small bunch spacing Harmonic analysis of nonstationary signals with application to LHC beam measurements Theory of particle beams transport over curved plasma-discharge capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1