Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-08-07 DOI:10.1007/s10971-024-06500-y
Sufyan Ashraf, Zeshan Ali Sandhu, Muhammad Asam Raza, Ali Haider Bhalli, Muhammad Hamayun, Adnan Ashraf, Abdullah G. Al-Sehemi
{"title":"Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors","authors":"Sufyan Ashraf,&nbsp;Zeshan Ali Sandhu,&nbsp;Muhammad Asam Raza,&nbsp;Ali Haider Bhalli,&nbsp;Muhammad Hamayun,&nbsp;Adnan Ashraf,&nbsp;Abdullah G. Al-Sehemi","doi":"10.1007/s10971-024-06500-y","DOIUrl":null,"url":null,"abstract":"<div><p>The sol-gel method was used to synthesize pure ZnO and MoO<sub>4</sub>@ZnO nanostructures for dual functionality in supercapacitors and photocatalysis. The material properties were examined using photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). A PL study showed the presence of an intense peak centering approximately around 405 nm, which is primarily due to the near-band edge emission of ZnO excitonic recombination. XRD confirmed the formation of the ZnMoO<sub>4</sub> crystal system. The SEM showed uniformed nano-flakes which was validated by EDX analysis having typical peaks of Zn, O, and Mo. The synthesized materials were evaluated for bi-functional application, including energy storage and photocatalytic degradation of methylene blue (MB) under solar irradiation. The 5% MoO<sub>4</sub>@ZnO nanomaterials showed uniform nanoflakes morphology with remarkable photocatalytic as well as electrochemical excellence. Notably, the 5% MoO<sub>4</sub>@ZnO nanomaterial degraded MB about 90.02% within 200 min. Galvanostatic charge discharge (GCD) exhibited an outstanding specific capacitance of 1026 F/g at 1 A/g for 5% MoO<sub>4</sub>@ZnO. The columbic efficiency of the 5% MoO<sub>4</sub>@ZnO electrode material was assessed until 2000 cycles, that retains its stability about 87%. The cyclic voltammetry was also assessed for the calculation of specific capacitance and energy density. The 5% MoO<sub>4</sub>@ZnO depicted excellent capacitance and energy density about 915.62 F/g and 53.72 Wh/kg respectively. This study showed that 5% MoO<sub>4</sub>@ZnO is a suitable candidate with the exceptional dual function that can be employed for the development of next-generation energy storage and photocatalysis.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"25 - 43"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06500-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The sol-gel method was used to synthesize pure ZnO and MoO4@ZnO nanostructures for dual functionality in supercapacitors and photocatalysis. The material properties were examined using photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). A PL study showed the presence of an intense peak centering approximately around 405 nm, which is primarily due to the near-band edge emission of ZnO excitonic recombination. XRD confirmed the formation of the ZnMoO4 crystal system. The SEM showed uniformed nano-flakes which was validated by EDX analysis having typical peaks of Zn, O, and Mo. The synthesized materials were evaluated for bi-functional application, including energy storage and photocatalytic degradation of methylene blue (MB) under solar irradiation. The 5% MoO4@ZnO nanomaterials showed uniform nanoflakes morphology with remarkable photocatalytic as well as electrochemical excellence. Notably, the 5% MoO4@ZnO nanomaterial degraded MB about 90.02% within 200 min. Galvanostatic charge discharge (GCD) exhibited an outstanding specific capacitance of 1026 F/g at 1 A/g for 5% MoO4@ZnO. The columbic efficiency of the 5% MoO4@ZnO electrode material was assessed until 2000 cycles, that retains its stability about 87%. The cyclic voltammetry was also assessed for the calculation of specific capacitance and energy density. The 5% MoO4@ZnO depicted excellent capacitance and energy density about 915.62 F/g and 53.72 Wh/kg respectively. This study showed that 5% MoO4@ZnO is a suitable candidate with the exceptional dual function that can be employed for the development of next-generation energy storage and photocatalysis.

Graphical Abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示富含 ZnMoO4 的纳米片修饰电极在高效光催化和超级电容器方面的双功能潜力
采用溶胶-凝胶法合成了纯氧化锌和 MoO4@ZnO 纳米结构,用于超级电容器和光催化的双重功能。使用光致发光光谱(PL)、傅立叶变换红外光谱(FTIR)、X 射线衍射光谱(XRD)、扫描电子显微镜(SEM)和能量色散光谱(EDX)对材料特性进行了检测。聚光研究显示,在大约 405 纳米波长的中心存在一个强烈的峰值,这主要是由于氧化锌激子重组的近带边缘发射所致。XRD 证实了 ZnMoO4 晶体体系的形成。扫描电子显微镜(SEM)显示出均匀的纳米薄片,EDX 分析也验证了这一点,该分析具有典型的 Zn、O 和 Mo 峰。对合成材料的双功能应用进行了评估,包括储能和在太阳照射下光催化降解亚甲基蓝(MB)。5%的MoO4@ZnO纳米材料呈现出均匀的纳米片状形态,具有显著的光催化和电化学性能。值得注意的是,5% MoO4@ZnO 纳米材料在 200 分钟内降解了约 90.02% 的甲基溴。电静电荷放电(GCD)显示,5% MoO4@ZnO 在 1 A/g 时的比电容为 1026 F/g。对 5% MoO4@ZnO 电极材料的电容效率进行了评估,直到 2000 次循环后,其稳定性仍保持在 87% 左右。还对循环伏安法进行了评估,以计算比电容和能量密度。5%MoO4@ZnO 的电容和能量密度分别达到了 915.62 F/g 和 53.72 Wh/kg。这项研究表明,5% MoO4@ZnO 是一种具有特殊双重功能的合适候选材料,可用于开发下一代储能和光催化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1