Sheraz Yousaf, Safaa N. Abdou, Muhammad Afaq, Mohamed M. Ibrahim, Imran Shakir, Salah M. El-Bahy, Iqbal Ahmad, Muhammad Shahid, Muhammad Farooq Warsi
{"title":"La+3-doped CoFe2O4@MXene bifunctional electrocatalyst for superior OER and HER activity","authors":"Sheraz Yousaf, Safaa N. Abdou, Muhammad Afaq, Mohamed M. Ibrahim, Imran Shakir, Salah M. El-Bahy, Iqbal Ahmad, Muhammad Shahid, Muhammad Farooq Warsi","doi":"10.1007/s10971-024-06504-8","DOIUrl":null,"url":null,"abstract":"<div><p>The lanthanum doped cobalt ferrite (La<sup>+3</sup>-CoFe<sub>2</sub>O<sub>4</sub>) incorporated in MXene sheets bifunctional electrocatalyst was prepared and then subjected to various analyses to assess their structural, morphological, and functional group characteristics. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) were employed for this purpose. The electrochemical performance of La-CoFe<sub>2</sub>O<sub>4</sub>@MXene was investigated in an alkaline solution to assess the bifunctional (OER/HER) performances. The results revealed that La-CoFe<sub>2</sub>O<sub>4</sub>@MXene exhibited significantly lower overpotential and a lesser Tafel slope during OER compared to both CoFe<sub>2</sub>O<sub>4</sub> and La-CoFe<sub>2</sub>O<sub>4</sub> materials. Similarly, during HER, La-CoFe<sub>2</sub>O<sub>4</sub>@MXene demonstrated superior performance. The electrochemical impedance (EIS) analysis was also conducted on all samples. These results indicated that the La-CoFe<sub>2</sub>O<sub>4</sub>@MXene electrocatalyst displayed reduced charge transfer resistance (2.18 Ω) and a higher exchange current density (2.94 mA cm<sup>−2</sup>) compared to its counterparts. These results collectively demonstrate the exceptional electrocatalytic behavior of La-CoFe<sub>2</sub>O<sub>4</sub>@MXene. This enhanced performance is likely attributable to the synergistic effect of lanthanum doping, which introduces defects into the material, and the presence of MXene sheets, which facilitates faster charge transfer within the electrocatalyst. To the best of our knowledge, this is the first study to explore La-CoFe₂O₄@MXene for water splitting. Our results demonstrate that this material requires significantly lower overpotential for OER and HER in an alkaline medium, showcasing its potential as an efficient and cost-effective catalyst for water splitting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"1 - 14"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06504-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The lanthanum doped cobalt ferrite (La+3-CoFe2O4) incorporated in MXene sheets bifunctional electrocatalyst was prepared and then subjected to various analyses to assess their structural, morphological, and functional group characteristics. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) were employed for this purpose. The electrochemical performance of La-CoFe2O4@MXene was investigated in an alkaline solution to assess the bifunctional (OER/HER) performances. The results revealed that La-CoFe2O4@MXene exhibited significantly lower overpotential and a lesser Tafel slope during OER compared to both CoFe2O4 and La-CoFe2O4 materials. Similarly, during HER, La-CoFe2O4@MXene demonstrated superior performance. The electrochemical impedance (EIS) analysis was also conducted on all samples. These results indicated that the La-CoFe2O4@MXene electrocatalyst displayed reduced charge transfer resistance (2.18 Ω) and a higher exchange current density (2.94 mA cm−2) compared to its counterparts. These results collectively demonstrate the exceptional electrocatalytic behavior of La-CoFe2O4@MXene. This enhanced performance is likely attributable to the synergistic effect of lanthanum doping, which introduces defects into the material, and the presence of MXene sheets, which facilitates faster charge transfer within the electrocatalyst. To the best of our knowledge, this is the first study to explore La-CoFe₂O₄@MXene for water splitting. Our results demonstrate that this material requires significantly lower overpotential for OER and HER in an alkaline medium, showcasing its potential as an efficient and cost-effective catalyst for water splitting.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.