{"title":"Carbon and Water Balances in a Watermelon Crop Mulched with Biodegradable Films in Mediterranean Conditions at Extended Growth Season Scale","authors":"Rossana M. Ferrara, Alessandro Azzolini, Alessandro Ciurlia, Gabriele De Carolis, Marcello Mastrangelo, Valerio Minorenti, Alessandro Montaghi, Mariagrazia Piarulli, Sergio Ruggieri, Carolina Vitti, Nicola Martinelli, Gianfranco Rana","doi":"10.3390/atmos15080945","DOIUrl":null,"url":null,"abstract":"The carbon source/sink nature and the water balance of a drip-irrigated and mulched watermelon cultivated under a semi-arid climate were investigated. Biodegradable films, plants and some fruits were left on the soil as green manure. The study spanned from watermelon planting to the subsequent crop (June–November 2023). The eddy covariance technique was employed to monitor water vapor (H2O) and carbon dioxide (CO2) fluxes, which were partitioned into transpiration, evaporation, photosynthesis and respiration, respectively, using the flux variance similarity method.This method utilizesthe Monin–Obukhov similarity theory to separate stomatal (photosynthesis and transpiration) from non-stomatal (respiration and evaporation) processes. The results indicate that mulching films contribute to carbon sequestration in the soil (+19.3 g C m−2). However, the mulched watermelon crop presented in this study functions as a net carbon source, with a net biome exchange, representing the net rate of C accumulation in or loss from ecosystems, equal to +230 g C m−2. This is primarily due to the substantial amount of carbon exported through marketable fruits. Fixed water scheduling led to water waste through deep percolation (approximately 1/6 of the water supplied), which also contributed to the loss of organic carbon via leaching (−4.3 g C m−2). These findings recommend further research to enhance the sustainability of this crop in terms of both water and carbon balances.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"36 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15080945","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The carbon source/sink nature and the water balance of a drip-irrigated and mulched watermelon cultivated under a semi-arid climate were investigated. Biodegradable films, plants and some fruits were left on the soil as green manure. The study spanned from watermelon planting to the subsequent crop (June–November 2023). The eddy covariance technique was employed to monitor water vapor (H2O) and carbon dioxide (CO2) fluxes, which were partitioned into transpiration, evaporation, photosynthesis and respiration, respectively, using the flux variance similarity method.This method utilizesthe Monin–Obukhov similarity theory to separate stomatal (photosynthesis and transpiration) from non-stomatal (respiration and evaporation) processes. The results indicate that mulching films contribute to carbon sequestration in the soil (+19.3 g C m−2). However, the mulched watermelon crop presented in this study functions as a net carbon source, with a net biome exchange, representing the net rate of C accumulation in or loss from ecosystems, equal to +230 g C m−2. This is primarily due to the substantial amount of carbon exported through marketable fruits. Fixed water scheduling led to water waste through deep percolation (approximately 1/6 of the water supplied), which also contributed to the loss of organic carbon via leaching (−4.3 g C m−2). These findings recommend further research to enhance the sustainability of this crop in terms of both water and carbon balances.
研究了半干旱气候下滴灌和地膜覆盖西瓜的碳源/汇性质和水分平衡。生物降解薄膜、植物和一些水果作为绿肥留在了土壤上。研究时间跨度从西瓜种植到后续作物(2023 年 6 月至 11 月)。该方法利用莫宁-奥布霍夫相似理论将气孔过程(光合作用和蒸腾作用)与非气孔过程(呼吸作用和蒸腾作用)分开。结果表明,地膜覆盖有助于土壤固碳(+19.3 g C m-2)。然而,本研究中的地膜覆盖西瓜作物是一个净碳源,其生物群落净交换量(代表生态系统中碳积累或碳损失的净速率)相当于 +230 g C m-2。这主要是由于大量碳通过可销售的果实输出。固定的水量调度导致深层渗漏造成水资源浪费(约占供水量的 1/6),这也造成了有机碳的沥滤损失(-4.3 克 C m-2)。这些发现建议进一步开展研究,以提高这种作物在水和碳平衡方面的可持续性。
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.