EIOA: A computing expectation-based influence evaluation method in weighted hypergraphs

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2024-08-01 DOI:10.1016/j.ipm.2024.103856
Qingtao Pan , Haosen Wang , Jun Tang, Zhaolin Lv, Zining Wang, Xian Wu, Yirun Ruan, Tianyuan Yv, Mingrui Lao
{"title":"EIOA: A computing expectation-based influence evaluation method in weighted hypergraphs","authors":"Qingtao Pan ,&nbsp;Haosen Wang ,&nbsp;Jun Tang,&nbsp;Zhaolin Lv,&nbsp;Zining Wang,&nbsp;Xian Wu,&nbsp;Yirun Ruan,&nbsp;Tianyuan Yv,&nbsp;Mingrui Lao","doi":"10.1016/j.ipm.2024.103856","DOIUrl":null,"url":null,"abstract":"<div><p>Influence maximization (IM) is a key issue in network science. However, previous research on IM has previously explored binary interaction relationship in ordinary graphs, with little consideration for higher-order interaction that are more practical in hypergraphs, especially weighted hypergraphs. Therefore, this study focuses on solving the IM problem in weighted hypergraphs. Firstly, we adopt a novel and more reasonable dissemination model, namely the adaptive dissemination (AD), and incorporate it into weighted hypergraphs. Next, a computing expectation-based influence evaluation method is proposed to accurately obtain the expected influence in one-hop area (EIOA) of the seed node set. Meanwhile, three search algorithms are designed using the EIOA to effectively solve the initial seed set. Then, multi-level experiments are conducted to compare the proposed algorithms with other six advanced algorithms in eight weighted hypergraph datasets from the real world. The experimental results are visually analyzed and two nonparametric test processes are applied to verify the significant advantages of the proposed algorithms. Finally, the impact of different factors such as seed set correlation, model parameter setting, and weight attribute on dissemination is explored, and the efficiency and robustness of these algorithms are further validated.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002152","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Influence maximization (IM) is a key issue in network science. However, previous research on IM has previously explored binary interaction relationship in ordinary graphs, with little consideration for higher-order interaction that are more practical in hypergraphs, especially weighted hypergraphs. Therefore, this study focuses on solving the IM problem in weighted hypergraphs. Firstly, we adopt a novel and more reasonable dissemination model, namely the adaptive dissemination (AD), and incorporate it into weighted hypergraphs. Next, a computing expectation-based influence evaluation method is proposed to accurately obtain the expected influence in one-hop area (EIOA) of the seed node set. Meanwhile, three search algorithms are designed using the EIOA to effectively solve the initial seed set. Then, multi-level experiments are conducted to compare the proposed algorithms with other six advanced algorithms in eight weighted hypergraph datasets from the real world. The experimental results are visually analyzed and two nonparametric test processes are applied to verify the significant advantages of the proposed algorithms. Finally, the impact of different factors such as seed set correlation, model parameter setting, and weight attribute on dissemination is explored, and the efficiency and robustness of these algorithms are further validated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EIOA:加权超图中基于计算期望的影响力评估方法
影响最大化(IM)是网络科学的一个关键问题。然而,以往有关 IM 的研究都是探讨普通图中的二元交互关系,很少考虑在超图(尤其是加权超图)中更实用的高阶交互关系。因此,本研究将重点放在解决加权超图中的 IM 问题上。首先,我们采用了一种新颖且更合理的传播模型,即自适应传播(AD),并将其融入到加权超图中。接着,我们提出了一种基于计算期望的影响力评估方法,以精确获得种子节点集的单跳区域内期望影响力(EIOA)。同时,利用 EIOA 设计了三种搜索算法,以有效求解初始种子集。然后,在现实世界的八个加权超图数据集中进行了多层次实验,比较了提出的算法和其他六种先进算法。对实验结果进行了直观分析,并应用两个非参数检验过程来验证所提算法的显著优势。最后,探讨了种子集相关性、模型参数设置和权重属性等不同因素对传播的影响,进一步验证了这些算法的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
ME3A: A Multimodal Entity Entailment framework for multimodal Entity Alignment Hierarchical multi-label text classification of tourism resources using a label-aware dual graph attention network Impact of economic and socio-political risk factors on sovereign credit ratings Higher-order structure based node importance evaluation in directed networks Membership inference attacks via spatial projection-based relative information loss in MLaaS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1