QFAS-KE: Query focused answer summarization using keyword extraction

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2025-02-26 DOI:10.1016/j.ipm.2025.104104
Rupali Goyal , Parteek Kumar , V.P. Singh
{"title":"QFAS-KE: Query focused answer summarization using keyword extraction","authors":"Rupali Goyal ,&nbsp;Parteek Kumar ,&nbsp;V.P. Singh","doi":"10.1016/j.ipm.2025.104104","DOIUrl":null,"url":null,"abstract":"<div><div>Question answering (QA) portals like Quora, Stack Overflow, AskUbuntu, Yahoo! Answers, Reddit, and Wiki Answers have emerged as hubs of curiosity, highlighting the rising demands for easily accessible information and are drawing focus to hundreds of millions of questions. The efficient utilization of these questions and associated answers has become significantly vital for these QA websites. The similarity-based information retrieval methods provide a ranked list of potentially relevant questions, and the users have to spend significant time sifting through the results to discover the best answer. This paper aims to provide a precise, comprehensive, summarized answer to the user asked query using extracted keywords that offer valuable insights into relevant content. The research work presents a Query focused Answer Summarization framework using Keyword Extraction (QFAS-KE). It is a four-stage framework, including query question pre-processing, semantic question search (utilizing SBERT and FAISS vector database), answer retrieval and re-ranking (utilizing BERT-based bi-encoder and cross-encoder), and answer summary generation (using fine-tuned transformers such as BART, PEGASUS, T5) with keyword guidance (using a keyword extractor such as KeyBERT). The results conceptualize the efficacy of the proposed framework on task-specific datasets (CNN/DailyMail and MS-MARCO) over the ROUGE metric. The model outperformed existing baseline models on CNN/DailyMail dataset with a value of 47.5 (PEGASUS), 46.2 (BART), and 45.1 (T5) in terms of ROUGE-1 and on MS-MARCO dataset with a value of 75.18 (PEGASUS), 79.02 (BART), and 74.69 (T5) in terms of ROUGE-L.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104104"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000469","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Question answering (QA) portals like Quora, Stack Overflow, AskUbuntu, Yahoo! Answers, Reddit, and Wiki Answers have emerged as hubs of curiosity, highlighting the rising demands for easily accessible information and are drawing focus to hundreds of millions of questions. The efficient utilization of these questions and associated answers has become significantly vital for these QA websites. The similarity-based information retrieval methods provide a ranked list of potentially relevant questions, and the users have to spend significant time sifting through the results to discover the best answer. This paper aims to provide a precise, comprehensive, summarized answer to the user asked query using extracted keywords that offer valuable insights into relevant content. The research work presents a Query focused Answer Summarization framework using Keyword Extraction (QFAS-KE). It is a four-stage framework, including query question pre-processing, semantic question search (utilizing SBERT and FAISS vector database), answer retrieval and re-ranking (utilizing BERT-based bi-encoder and cross-encoder), and answer summary generation (using fine-tuned transformers such as BART, PEGASUS, T5) with keyword guidance (using a keyword extractor such as KeyBERT). The results conceptualize the efficacy of the proposed framework on task-specific datasets (CNN/DailyMail and MS-MARCO) over the ROUGE metric. The model outperformed existing baseline models on CNN/DailyMail dataset with a value of 47.5 (PEGASUS), 46.2 (BART), and 45.1 (T5) in terms of ROUGE-1 and on MS-MARCO dataset with a value of 75.18 (PEGASUS), 79.02 (BART), and 74.69 (T5) in terms of ROUGE-L.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
Improving generalization in DNNs through enhanced orthogonality in momentum-based optimizers Estimating the quality of published medical research with ChatGPT A robust rating aggregation method based on temporal coupled bipartite network QFAS-KE: Query focused answer summarization using keyword extraction Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1