Fast and order‐invariant inference in Bayesian VARs with nonparametric shocks

Florian Huber, Gary Koop
{"title":"Fast and order‐invariant inference in Bayesian VARs with nonparametric shocks","authors":"Florian Huber, Gary Koop","doi":"10.1002/jae.3087","DOIUrl":null,"url":null,"abstract":"SummaryThe shocks that hit macroeconomic models such as Vector Autoregressions (VARs) have the potential to be non‐Gaussian, exhibiting asymmetries and fat tails. This consideration motivates the VAR developed in this paper that uses a Dirichlet process mixture (DPM) to model the reduced‐form shocks. However, we do not follow the obvious strategy of simply modeling the VAR errors with a DPM as this would lead to computationally infeasible Bayesian inference in larger VARs and potentially a sensitivity to the way the variables are ordered in the VAR. Instead, we develop a particular additive error structure inspired by Bayesian nonparametric treatments of random effects in panel data models. We show that this leads to a model that allows for computationally fast and order‐invariant inference in large VARs with nonparametric shocks. Our empirical results with nonparametric VARs of various dimensions show that nonparametric treatment of the VAR errors often improves forecast accuracy and can be used to analyze the changing transmission of US monetary policy.","PeriodicalId":501243,"journal":{"name":"Journal of Applied Econometrics ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jae.3087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryThe shocks that hit macroeconomic models such as Vector Autoregressions (VARs) have the potential to be non‐Gaussian, exhibiting asymmetries and fat tails. This consideration motivates the VAR developed in this paper that uses a Dirichlet process mixture (DPM) to model the reduced‐form shocks. However, we do not follow the obvious strategy of simply modeling the VAR errors with a DPM as this would lead to computationally infeasible Bayesian inference in larger VARs and potentially a sensitivity to the way the variables are ordered in the VAR. Instead, we develop a particular additive error structure inspired by Bayesian nonparametric treatments of random effects in panel data models. We show that this leads to a model that allows for computationally fast and order‐invariant inference in large VARs with nonparametric shocks. Our empirical results with nonparametric VARs of various dimensions show that nonparametric treatment of the VAR errors often improves forecast accuracy and can be used to analyze the changing transmission of US monetary policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非参数冲击的贝叶斯 VAR 中的快速有序不变推理
摘要冲击宏观经济模型(如向量自回归(VAR))的冲击有可能是非高斯的,表现出不对称和肥尾。基于这一考虑,本文开发了使用德里克利特过程混合物(DPM)对还原形式冲击进行建模的 VAR。然而,我们并没有采用简单地用 DPM 对 VAR 误差建模的明显策略,因为这将导致在较大的 VAR 中贝叶斯推理计算上的不可行性,并可能对 VAR 中变量排序方式产生敏感性。相反,我们受面板数据模型中随机效应的贝叶斯非参数处理方法的启发,开发了一种特殊的加法误差结构。我们的研究表明,这种模型可以在具有非参数冲击的大型 VAR 中实现快速计算和阶次不变的推断。我们对不同维度的非参数 VAR 的实证结果表明,对 VAR 误差的非参数处理往往能提高预测准确性,并可用于分析美国货币政策不断变化的传导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization Fast and order‐invariant inference in Bayesian VARs with nonparametric shocks Structural breaks and GARCH models of exchange rate volatility: Re‐examination and extension Sudden stop: Supply and demand shocks in the German natural gas market The boosted Hodrick‐Prescott filter is more general than you might think
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1