A non‐stationary factor copula model for non‐Gaussian spatial data

Pub Date : 2024-08-05 DOI:10.1002/sta4.715
Sagnik Mondal, Pavel Krupskii, Marc G. Genton
{"title":"A non‐stationary factor copula model for non‐Gaussian spatial data","authors":"Sagnik Mondal, Pavel Krupskii, Marc G. Genton","doi":"10.1002/sta4.715","DOIUrl":null,"url":null,"abstract":"We introduce a new copula model for non‐stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log‐likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new copula model for non‐stationary replicated spatial data. It is based on the assumption that a common factor exists that controls the joint dependence of all the observations from the spatial process. As a result, our proposal can model tail dependence and tail asymmetry, unlike the Gaussian copula model. Moreover, we show that the new model can cover a full range of dependence between tail quadrant independence and tail dependence. Although the log‐likelihood of the model can be obtained in a simple form, we discuss its numerical computational issues and ways to approximate it for drawing inference. Using the estimated copula model, the spatial process can be interpolated at locations where it is not observed. We apply the proposed model to temperature data over the western part of Switzerland, and we compare its performance with that of its stationary version and with the Gaussian copula model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
非高斯空间数据的非平稳因子共轭模型
我们为非平稳复制空间数据引入了一种新的 copula 模型。它基于这样一个假设,即存在一个共同因子来控制空间过程中所有观测值的共同依赖性。因此,与高斯共线模型不同,我们的建议可以对尾部依赖性和尾部不对称进行建模。此外,我们还证明了新模型可以涵盖尾象限独立性和尾部依赖性之间的全部依赖关系。虽然该模型的对数似然可以用简单的形式得到,但我们讨论了其数值计算问题和近似推断的方法。利用估计的 copula 模型,可以在未观测到空间过程的位置对空间过程进行插值。我们将所提出的模型应用于瑞士西部的气温数据,并将其性能与其静态版本和高斯 copula 模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1