The effect of initial temperature on the mechanical strength of tricalcium phosphate/Chitosan/Silica aerogels nanocomposites using molecular dynamics simulation

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-08-06 DOI:10.1016/j.jtice.2024.105682
Aliakbar Karimipour , Mohamad Shahgholi , Ali Attaeyan , PHH Viet , Saeed A. Asiri , Khaled M. Alfawaz , Ageel F. Alogla
{"title":"The effect of initial temperature on the mechanical strength of tricalcium phosphate/Chitosan/Silica aerogels nanocomposites using molecular dynamics simulation","authors":"Aliakbar Karimipour ,&nbsp;Mohamad Shahgholi ,&nbsp;Ali Attaeyan ,&nbsp;PHH Viet ,&nbsp;Saeed A. Asiri ,&nbsp;Khaled M. Alfawaz ,&nbsp;Ageel F. Alogla","doi":"10.1016/j.jtice.2024.105682","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Chitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine.</p></div><div><h3>Methods</h3><p>The focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties.</p></div><div><h3>Significant Findings</h3><p>The results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"164 ","pages":"Article 105682"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024003407","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Chitosan is an organic polymer derived from chitin, showcasing commendable biocompatibility and biodegradability, while tricalcium phosphate emerges as an active ceramic with proven biocompatibility and superior compatibility with bone tissue. This composite material, endowed with a unique amalgamation of attributes including biocompatibility, porosity, and mechanical strength, proves highly applicable in diverse fields such as tissue engineering, drug delivery systems, wound repair, and as scaffolds for cell proliferation in regenerative medicine.

Methods

The focal point of this study is an exploration of the nuanced interplay between the mechanical properties of silica aerogel/chitosan tricalcium phosphate nanocomposites with increasing initial temperature. Employing molecular dynamics (MD) simulation, the research aims to unveil the temperature-induced variations in the critical properties.

Significant Findings

The results reveal that the ultimate strength and Young's modulus values are determined to converge to 772.28 MPa and 62.291 GPa, at 297 K. As the initial temperature escalates from 300 to 350 K, the US decreases from 72.28 to 714.47 MPa. The decrease in US could be due to higher temperatures, the increased thermal energy can lead to greater atomic vibrations within the material, which can promote easier dislocation movement and result in reduced resistance to deformation. The results reveal that as temperature increases to 320 K, YM increases to 67.134, and with further increase in temperature, YM decreases to 62.865 GPa

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分子动力学模拟研究初始温度对磷酸三钙/壳聚糖/二氧化硅气凝胶纳米复合材料机械强度的影响
壳聚糖是一种从甲壳素中提取的有机聚合物,具有良好的生物相容性和生物降解性,而磷酸三钙则是一种活性陶瓷,具有公认的生物相容性和与骨组织的良好兼容性。这种复合材料具有独特的综合特性,包括生物相容性、多孔性和机械强度,被证明非常适用于组织工程、药物输送系统、伤口修复等多个领域,并可作为再生医学中细胞增殖的支架。本研究的重点是探索二氧化硅气凝胶/壳聚糖磷酸三钙纳米复合材料的机械性能随初始温度升高而产生的微妙相互作用。研究采用分子动力学(MD)模拟,旨在揭示温度引起的临界特性变化。结果表明,在 297 K 时,极限强度和杨氏模量值分别为 772.28 MPa 和 62.291 GPa。US 值下降的原因可能是温度升高,热能增加会导致材料内部原子振动加剧,从而使位错运动更加容易,导致变形阻力减小。结果显示,当温度升高到 320 K 时,YM 上升到 67.134,随着温度的进一步升高,YM 下降到 62.865 GPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Enhanced removal of ciprofloxacin antibiotic using agricultural byproduct-derived biochars: From studies on adsorption kinetic, isotherm and thermodynamic to explore mechanistic insights into the removal pathway Scale-up microreactor coupling binary surfactants for high-throughput preparation of flaky dasatinib nanocrystals Mechanisms and mass transfer kinetics of Pb(II) adsorption onto rice husk charcoal silica gel From urea to high-efficiency photocatalyst: The impact of confined-degree and silica support on structure engineering of carbon nitride Magnetron sputtering of niobium thin films onto wood biochar to increase the selectivity for electrostatic attraction of anionic brilliant blue dye
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1